
 

Sensing Fine-Grained Hand Activity with Smartwatches 
Gierad Laput       Chris Harrison 

Carnegie Mellon University, Human-Computer Interaction Institute 
5000 Forbes Ave, Pittsburgh, PA 15213 

{gierad.laput, chris.harrison}@cs.cmu.edu

ABSTRACT 
Capturing fine-grained hand activity could make computa-
tional experiences more powerful and contextually aware. 
Indeed, philosopher Immanuel Kant argued, "the hand is the 
visible part of the brain." However, most prior work has fo-
cused on detecting whole-body activities, such as walking, 
running and bicycling. In this work, we explore the feasi-
bility of sensing hand activities from commodity smart-
watches, which are the most practical vehicle for achieving 
this vision. Our investigations started with a 50 participant, 
in-the-wild study, which captured hand activity labels over 
nearly 1000 worn hours. We then studied this data to scope 
our research goals and inform our technical approach. We 
conclude with a second, in-lab study that evaluates our clas-
sification stack, demonstrating 95.2% accuracy across 25 
hand activities. Our work highlights an underutilized, yet 
highly complementary contextual channel that could un-
lock a wide range of promising applications. 
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1 INTRODUCTION 
Human activity sensing has been an area of active research 
for several decades (see e.g., [6][9][14][23][71]). The advent 
of robust mobile sensing platforms (like the Intel Mobile 
Sensing Platform (MSP) [12]) and the ubiquity of 
smartphones has served to further accelerate research in 
this domain. In just the past few years, wearables have 
emerged, affording researchers a beachhead on the body, 
offering improved fidelity and new sensed dimensions. To-
day, many consumer smartphones and smartwatches in-
clude activity sensing capabilities that can distinguish be-
tween e.g., walking, biking, driving and sleeping [23].  
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Figure 1. In this work, we investigate the feasibility of sensing 25 hand activities using commodity smartwatches, which are 
uniquely positioned to capture such fine-grained activity. Activity names are provided in Figure 3. The 25th hand activity we 
evaluated, brushing teeth (Y), is not shown here. 



 

Most often, classified data is exposed to users for fitness 
and personal informatics applications, and thus is chiefly 
focused on locomotion (or the lack thereof). However, this 
ignores a rich and expansive landscape of fine-grained hu-
man actions, especially those undertaken by the hands. We 
call these hand activities, and they are often independent of 
body activity. For example, one can type on their 
smartphone (hand activity) while walking (body activity); 
or take a sip of water from a bottle while jogging; or flip 
through a book while lying in bed. Wilson [76] offers an 
eloquent portrayal of these diverse uses: 

“After tugging at the covers and sheets and rolling your-
self into a more comfortable position, you realized that you 
really did have to get out of bed. Next came the circus rou-
tine of noisy bathroom antics: the twisting of faucet han-
dles, opening and closing of cabinet and shower doors, put-
ting the toilet seat back where it belongs. There were slip-
pery things to play with: soap, brushes, tubes, and little jars 
with caps and lids to twist or flip open; […] Each morning 
begins with a ritual dash through our own private obstacle 
course – objects to be opened or closed, lifted or pushed, 
twisted or turned, pulled, twiddled, or tied. The hands move 
so ably over this terrain that we think nothing of the ac-
complishment. […] Our lives are so full of commonplace ex-
perience in which the hands are so skillfully and silently 
involved that we rarely consider how dependent upon them 
we actually are.” 

If computing systems could know the activity of both 
the body and the hands, applications could be more context 
sensitive and assistive to immediate, ongoing tasks. State-
of-the-art activity detection has been largely stuck at am-
bulatory states (walking, standing, sleeping, etc.) for dec-
ades. We envision smartwatches (slowly becoming more 
pervasive) as a unique beachhead on the body for capturing 
rich everyday actions. This could unlock many applications, 
ranging from personal informatics, health and skills assess-
ment, and broadly, context-awareness. For example, a sys-
tem that knows what your hands are doing can intelligently 
avoid interruptions. Hand activity detection can also be 
used to identify the onset of harmful patterns (e.g., repeti-
tive strain injury or hand-arm vibration syndrome), or for 
building healthy habits (e.g., regular hand washing).  

In this work, we show that hand activity can be sensed 
robustly from a commodity, off-the-shelf smartwatch, with-
out any external infrastructure or instrumentation of ob-
jects, opening a new and practical means for achieving this 
vision. In addition to tracking coarse movement and orien-
tation of the hand, the wrist is also the perfect vantage point 
to capture bio-acoustic information produced as a byprod-
uct of most hand activities (e.g., typing, brushing teeth). 
Here, we define bio-acoustics as body-coupled micro-

vibrations propagating through the user’s arm. These sig-
nals are inherently diverse, owing to user variance, innu-
merable tools and accessories, and differences in environ-
ment. To overcome this, we developed a flexible processing 
pipeline that demonstrates surprising robustness, under-
scoring the feasibility of our approach.  

We also draw an important distinction between hand 
actions versus hand activities. Specifically, we define a 
hand activity as a sustained series of related hand actions, 
typically lasting seconds or minutes. For example, a single 
clap would be a hand action, whereas a series of claps would 
be the activity of clapping. The decision to focus on hand 
activities was both practical (there is more data from a con-
tinuous signal to enable robust classification) and func-
tional (instantaneous hand events are rarely indicative of a 
user's activity, and thus offer less opportunities for compu-
tational enhancement).   

As we will discuss in detail, we started our investiga-
tions with a 50 participant, in-the-wild, experience sam-
pling (ESM) study [17]. This yielded a trove of real-world 
data that informed our machine learning efforts. Secondly, 
it gave us a working set of how people employ their hands 
in the modern world, as there were no contemporary “hand 
ethnographies” to draw upon. We categorized participants’ 
labels and selected 25 routine, yet interesting hand activities 
(Figures 1 and 4) to study for a second, in-lab feasibility 
evaluation. Employing an “obstacle course” methodology 
[6], we tested our full pipeline, which demonstrated 95.2% 
classification accuracy. We also ran a series of supplemental 
experiments to investigate specific questions, such as false 
positive rejection. Overall, we believe this work demon-
strates practical sensing of fine-grained hand activities us-
ing just a commodity smartwatch, opening new possibilities 
for responsive and context-sensitive applications. 

2 RELATED WORK 
Hands and their activities are the subject of study in many 
fields; here we concentrate on prior work directly related to 
our immediate efforts, with a focus on the HCI literature.  

2.1 Coarse Activity Recognition 
Most activity recognition efforts have inferred user-state 
through worn sensors [6][9][16][43][58]. These systems are 
generally constrained to a limited set of coarse, whole-body 
activities, such as walking, running and bicycling. In gen-
eral, systems must strike a balance between signal richness 
and instrumentation unobtrusiveness. Activity recognition 
systems have seen some success in the market, including 
Nike+ shoe sensors, Apple Watch, FitBit, and Garmin arm-
bands. These products sense human activity via a combina-
tion of inertial measurement units (IMU), heart rate sensors 



 

and GPS. However, these products require explicit selection 
of pre-planned activities (i.e., user selects a new run session 
from Nike+) to function reliably. 

2.2 Fine-Grained Activity Recognition 
One approach for fine-grained, human activity sensing is to 
deploy sensors and tags in the environment. Methods in-
clude acoustic monitoring [13][55], computer vision [70], 
electromagnetic sensing [60][80], and tagging objects of in-
terest with markers [44][57] and sensors [46]. Infrastruc-
ture-mediated [15][26][27] and general-purpose sensing 
approaches [40][41] have attempted room- and building- 
scale activity recognition. Alternatively, activity sensing 
can be achieved through worn sensing systems (see [14] for 
a survey). Wearables with electromagnetic [[38]], magneto-
inductive [71], inertial [49][50][51] and acoustic sensing 
[72] have all been used to recognize fine-grained activity 
sensing, including recognition of tool and appliance use. 
Also, worn cameras, in glasses [66] or on wrists 
[35][47][54], have been used extensively. 

2.3 Hand Pose and Gesture Detection 
Hand pose and motion sensing technologies can also be 
used to infer a user's context and activity (e.g., typing, play-
ing a musical instrument, grasping a cup). A wide variety of 
approaches have been demonstrated, including computer 
vision [20][35][54][74], electromyography [61], ultrasonics 
[73], bioacoustics [28], anatomical tomography [82], high-
frequency radio [45][81] and motion sensing [1][7][56][75]. 
One of the major uses of such sensing is automatic sign lan-
guage translation [63][79]. 

2.4 ViBand; Hand Actions vs. Activities 
Most related to this research is our previous work on 
ViBand [39], which also overclocked the accelerometer in a 
smartwatch to 4kHz, allowing it to capture high-fidelity, 
bio-acoustic information. We directly build on top of this 
enabling capability, though our research focus is different: 
ViBand looked at explicit hand gestures for interactive con-
trol — waves, flicks, snaps and the like – which are different 
than hand activities performed by users to achieve a task – 
e.g., typing, cutting, pouring, writing. Moreover, gestures 
tend to have exaggerated motions (as they are used for com-
munication) and are well segmented — this is rarely true of 
hand activities, which can be subtle, discontinuous and of 
varying durations.  

Enabling hand activity recognition required different in-
novations, and as a consequence, our machine learning 
pipeline is significantly more advanced than that used in 
ViBand. Further, ViBand’s largest hand gesture set con-
tained six actions, which achieved 96.0% accuracy in its user 
study. This stands in contrast to our user study’s 25 hand 

activities demonstrated at 95.2% accuracy. Our experience 
sampling and obstacle course studies also move signifi-
cantly beyond our initial work in ViBand.  

3 PROOF-OF-CONCEPT SMARTWATCH  
As previously noted, a wide array of methods have been 
considered for detecting hand actions and activities. In con-
trast to almost all prior work in hand sensing, we purposely 
selected a commodity platform for our explorations and 
studies. On one hand, this is constraining, limiting the worn 
locations and breadth of sensors we can bring to bear on 
this challenging problem. On the other hand, if successful, 
it offers an immediate and practical means to achieve our 
vision; manufacturers could deploy such sensing function-
ality with little more than a software update. 

As a proof-of-concept platform, we use the smart-
watch and high-speed sampling mode identified in our pre-
vious ViBand [39] research. This is a LG W100 smartwatch 
running Android Wear (Figure 2). By modifying the pub-
licly available kernel [5], it is possible to configure the built-
in MPU6515 IMU to stream three-axis accelerometer data at 
4kHz [30]. This data stream captures coarse hand move-
ment and orientation, as well as bio-acoustic data (up to the 
2kHz Nyquist limit).  

4 POWER CONSUMPTION 
In worn systems, with small batteries, it is important to con-
sider how changes in operation will affect battery life. The 
MPU6515 datasheet details power consumption rates. At 
200Hz, power draw is 147µW, while at 4kHz sampling, 
power draw is 2719µW. While a ~18x difference is substan-
tial, both are small values and it is important to consider it 
in context. The LG G watch contains a 1520mWh battery, 
which means the difference of 2572µW consumes <0.2% of 
battery life per hour.  

Harder to estimate is total power load, which includes 
e.g., waking the main application processor, moving data 
around in memory, and saving data to persistent storage. 
As a real-world test, we configured five LG G watches to 
continuously capture high-speed accelerometer. We gave 

 
Figure 2. Our experience sampling watch app. At random 
intervals, wearers are prompted for activity labels (A). They 
select a hand activity (B), followed by a body activity (C). 



 

these watches to five participants, who wore them all day, 
and charged them at night. Over the course of five days, we 
recorded battery statistics from when the watches powered 
on to when they ran out of power.  

Across five days and five devices, the average battery life 
was 7.1 hours (SD=2.5). Given that our application kept the 
main application processor awake, we believe all day bat-
tery life is immediately achievable in a commercial imple-
mentation. It is now standard practice in the mobile indus-
try to use low-power coprocessors (i.e., “sensor hubs”) for 
reading, buffering and processing continuous sensor data 
(for functions such as step counting, lift to unlock, and spo-
ken keyword detection).  

5 OPEN SOURCE DATA AND CODE 
To facilitate future work in this area, we provide the source 
code for high-speed accelerometer acquisition on compati-
ble Android devices. We also make available our study data 
and model code. http://github.com/FIGLAB/hand-activities 

6 CONTEMPORARY HAND ACTIVITIES   
Hands are central to the human experience, and as such, 
have been the focus of inquiry across many fields, including 
paleontology and anatomy [77], linguistics [48] and neuro-
science [76], to name just a few. Ethnographic work has 
studied how hands are employed in everything from do-
mestic life to industrial settings [3][37]. Many hand taxon-
omies have been proposed, most commonly organized by 
grip or communication primitives [18], which roughly cor-
relate to functional or expressive uses respectively (see e.g., 
[21] for a survey of taxonomies). Unfortunately, much of 
this seminal research was completed in a time before com-
puting was common. Thus, as a starting point to our re-
search, we wished to know two key questions:  

1) What activities do humans perform with their hands 
in the modern world? Armed with such a list, we hoped to 
focus our technical efforts and better understand how 
recognition of these activities could be valuable in a com-
putationally-enhanced setting.  

2) Do different hand activities generate characteristic 
signals? In other words, are hand activities distinct and sep-
arable? Does a commodity sensor in a smartwatch provide 
sufficient fidelity to enable robust classification?  

6.1 Experience Sampling Study  
To explore these questions, we sought to collect hand activ-
ity data, in the wild, from a random cross-section of partic-
ipants going about their daily routines. Although retrospec-
tive data collection methods (e.g., surveys, interviews) are 

relatively easy to deploy, they are also subject to self-selec-
tion and recall bias [36], especially for something as unex-
ceptional as hand activities. We also considered observa-
tional methods, but this was impractical for the scale of de-
ployment we wished to achieve. 

Instead, we employed an experience sampling method 
(ESM) [17], which reduces biases by collecting data in situ 
[10]. Using a fleet of ten smartwatches, we deployed a cus-
tom application to 50 participants over the course of two 
weeks. We used a participant pool drawn from the local 
population to cover a variety of ages, genders and profes-
sions (25 female, mean age of 26.3).  

Our smartwatches ran a custom background application 
that we developed (Figure 2). After a random sleep interval 
between 7 and 15 minutes, our application surreptitiously 
captures ten seconds of accelerometer data. The app then 
activates the screen and vibration motor to catch the 
wearer’s attention. A simple labeling interface is displayed. 
The initial screen offers three options: ignore the prompt, 
mark the activity as ill-defined (e.g., indistinct, between ac-
tivities), or proceed to label the hand activity. Selecting ei-
ther of the first two options causes the application to return 
to sleep. If “label activity” is selected, the next screen asks: 
"what were your hands doing?" A pre-populated list of ac-
tivities is provided, as well as the ability to add custom la-
bels (using a companion smartphone application for ease of 
typing), which are added to the list for future use. If no user 
input was received on any screen for more than 30 seconds, 
the application returns to sleep.  

Before deployment, participants completed a one-hour 
setup and orientation. The pre-populated hand activity la-
bels were reviewed for understanding. Participants could 
also add additional labels as they desired. Participants also 
specified when they did not wish to be disturbed by the ex-
periment (e.g., 10pm – 8am). Following this orientation, 
participants wore the smartwatch for two days on their 
dominant arm (removed at night for recharging). Partici-
pants were paid $10 per day, plus $0.25 per label, up to a 
maximum of $15 on top of the base pay (i.e., max $25 per 
day). The study concluded with a 30-minute open-ended in-
terview. Participants often elaborated on hand activities 
they noticed but were never captured by the watch’s ran-
dom sampling interval.  

6.2 Results 
Cumulatively, our watches were deployed for 100 days (950 
worn hours), during which time they captured 5830 in-
stances. Of these, 765 instances (13.1%) were labeled as ill-
defined. The remaining 5065 instances contained 120 unique 
labels. To regularize participant labels, a pair of human cod-
ers used a consensus merging scheme. For example, “hand 



 

in pocket” and “hand on hips” were ultimately merged into 
a unified “hand still” label, which is the fundamental hand 
activity. This reduced the number of unique labels to 83, 
provided in Table 1.  

The insights and implications from our experience sam-
pling study were multifold. Foremost, it confirmed our as-
sumption that human hands engage in an incredible diver-
sity of activities. However, a few activities dominate: 35% of 
our labels are of the hands still or idle, and the next 4 most 
frequent labels are more common than the remaining 78 
hand activities combined. We believe this bodes well for 
hand activity sensing, as detecting a small class of common 
actions could encompass most hand activities over the 
course of a day (an easier classification problem). However, 
it is also apparent there is an extraordinarily long tail of less 
frequent activities. Some of these may be rare, but others 
may be common and are simply short in duration, so as to 
be infrequently captured by our random sampling method.  

We also found many labels that participants did not de-
compose into atomic hand activities. By atomic, we mean 

events that cannot be broken down into distinct stages. For 
example, eating and cooking were common labels, but these 
are compound activities that encompass a variety of atomic 
hand activities (e.g., washing, chopping, mixing). Our cod-
ers also encountered labels that were ambiguous. For exam-
ple, “open bottle” might mean twisting a cap off or using a 
bottle opener, which we view as distinct hand activities 
(though with a similar goal). These categorizations are in-
cluded in Table 1.  

Obviously, this result is just a small window onto the 
diverse landscape of hand activities, and much future work 
remains to be done in both HCI and beyond. Nonetheless, 
this result was sufficient to ground our assumptions and 
guide our subsequent technical efforts. 

7 HAND ACTIVITY CLASSIFICATION 
Informed by the findings from our experience sampling 
study, we proceeded to build a hand activity sensing pipe-
line for evaluation. This is comprised of three key stages: 
sensing, signal processing, and machine learning. 

RANK HAND ACTIVITY CATEGORY COUNT 
1 Hands Still / Idle (a) • ‡ atomic 1797 
2 Scrolling on Trackpad / Phone (b) • ‡ atomic 615 
3 Typing on Keyboard (c) • ‡ atomic 480 
4 Swaying (while locomoting) • ‡ atomic 346 
5 Typing on Phone (e) ‡ atomic 281 
6 Moving/Clicking Mouse (d) ‡ atomic 266 
7 Eating ‡ compound 241 
8 Gesturing (while speaking) ‡ compound 236 
9 Carrying Object ‡ ambiguous 233 
10 Writing (with implement) (i) • ‡ atomic 127 
11 Drinking (s) • ‡ atomic 61 
12 Cooking ‡ compound 53 
13 Steering (while driving) ‡ atomic 38 
14 Turning Pages atomic 32 
15 Smoking ‡ ambiguous 25 
16 Washing Hands (x) • atomic 23 
17 Exercising (on elliptical) ‡ atomic 19 
18 Brushing Teeth (y) • ‡ atomic 19 
19 Stocking Items ‡ ambiguous 19 
20 Using Hand Tools ‡ compound 9 
21 Grasping Bicycle Exercise Machine ‡ atomic 8 
22 Playing Piano (f) • atomic 8 
23 Operating Weight Machine ‡ ambiguous 8 
24 Sign Language ‡ compound 7 
25 Washing Dishes  compound 7 
26 Putting on Clothes compound 7 
27 Showering compound 5 
28 Dancing compound 5 
29 Cleaning compound 4 
30 Putting Away Clothes compound 4 
31 Brushing Hair (g) • atomic 4 
32 Folding Napkins ambiguous 4 
33 Scratching (o) • atomic 3 
34 Doing Makeup compound 3 
35 Using Scissors (j) • atomic 3 
36 Pushing ambiguous 2 
37 Operating Microscope compound 2 
38 Petting (m) • atomic 2 
39 Drying Hair ambiguous 2 
40 Using Remote / Game Controller (l) • atomic 2 
41 Clapping (n) • atomic 2 
42 Folding Clothes compound 2 

 

RANK HAND ACTIVITY CATEGORY COUNT 
43 Opening Door (p) • ambiguous 2 
44 Closing Door ambiguous 2 
45 Reaching for Object ambiguous 2 
46 Giving Massage compound 2 
47 Tying Shoes atomic 2 
48 Adjusting Watch ambiguous 2 
49 Kickboxing compound 2 
50 Operating Hand Drill (k) • ‡ atomic 2 
51 Pilates compound 2 
52 Wiping (cleaning) (v) • atomic 2 
53 Selecting Clothes compound 1 
54 Exercising compound 1 
55 Shaving ambiguous 1 
56 Tying Hair compound 1 
57 Counting Cash ambiguous 1 
58 Holding Phone (on call) atomic 1 
59 Grating (food) (t) • atomic 1 
60 Chopping Vegetables (u) • atomic 1 
61 Using Spoon (eating) atomic 1 
62 Using Knife (eating) atomic 1 
63 Yoga compound 1 
64 Washing Utensils (w) • atomic 1 
65 Scrubbing Counter atomic 1 
66 Operating Vacuum atomic 1 
67 Putting on Lotion ambiguous 1 
68 Stretching ambiguous 1 
69 Searching Pocket ambiguous 1 
70 Screwing Bolt atomic 1 
71 Opening Bottle ambiguous 1 
72 Opening Jar (q) • atomic 1 
73 Operating Scanner compound 1 
74 Putting on Jacket ambiguous 1 
75 Grooming Beard ambiguous 1 
76 Shifting Gears (while driving) atomic 1 
77 Tapping Screen (e) • atomic 1 
78 Pouring Drink (r) • atomic 1 
79 Blowing Nose ambiguous 1 
80 Playing Tennis compound 1 
81 Sorting Paper compound 1 
82 Lifting Free Weights ‡ ambiguous 1 
83 Putting on Chapstick / Lipstick atomic 1 
 Total Count_ 5065 
 

Table 1. All hand activities captured and labeled during our experience sampling study (50 users, 950 worn hours).  
‡ denotes activities that were pre-populated on our deployed watches (i.e., not entered manually by users). Bulleted (•) 
items were incorporated into the subsequent obstacle course user study (letter key also used in Figures 1 and 3). 
 



 

7.1 Sensing  
As mentioned earlier, our software for the LG G watch cap-
tures both gross orientation and movement of the hands, as 
well as higher-fidelity, bio-acoustic information resulting 
from hand activities. A dedicated background process reads 
IMU data and fills three, 256-length circular buffers with ac-
celerometer readings (X, Y and Z axes) at 4kHz. These buff-
ers are sent to a laptop over Bluetooth at ~16 FPS, which 
maintains an even larger buffer and performs additional 
processing operations. 

7.2 Signal Processing 
A sampling rate of 4kHz in combination with a large buffer 
(8192 samples) allows our system to compute very high res-
olution Fourier transforms (4096 bins with a 0.5Hz resolu-
tion) within a short period – just over two seconds worth of 
data, which is about how fast hands transition to new activ-
ities. We utilize only the lower 256 FFT bins representing 
frequencies from 0-128Hz, which we found best 

characterized most human activities in our ESM study. Fi-
nally, these 256 bins are saved into a 48-frame rolling spec-
trogram, representing ~3 seconds of data (Figure 3). These 
spectrograms are maintained for each of the three accel-
erometer axes.  

7.3 Machine Learning  
The next stage of the pipeline is extracting and modeling 
patterns from the signal. From our experiments, we noticed 
that important spatial-temporal relationships are encoded 
in the accelerometer’s three axes. For instance, when wip-
ing a table, the Z-axis is mostly unperturbed (chiefly bio-
acoustic noise resulting from friction, but little coarse mo-
tion), while the X and Y channels experience low frequency 
oscillations as the hand slides on the surface, often in a lin-
ear or circling motion. Indeed, we found many hand activi-
ties generated similarly distinctive activation patterns, 
which can be automatically learned with sufficient data.  

 
Figure 3. Example spectrograms of the 25 hand activities used in our obstacle course study (max of accelerometer  
axes shown). Y-axis is spectral power from 0 to 128 Hz. X-axis is time (3 seconds). Photos of these hand activities are shown 
in Figure 1, while Table 1 offers a rough estimation of how frequent these activities occur. 



 

To learn from our data, we leverage a convolutional neu-
ral network (CNN) architecture [2]. Specifically, we use a 
variant of VGG16 [64] with modified fully connected layers 
(Figure 4, last two layer sizes set to 2000 and 500). CNNs 
have been widely used for visual datasets (i.e., width × 
height × color channel), and in our case, we represent hand 
activities as spatio-temporal patches of bio-acoustic data. 
Specifically, we stack accelerometer spectrograms as 256 
frequency bins × 48 frames × 3 orientation channels, which 
serves as input to the CNN. Because of the strongly coupled 
nature of our channels, this setup forces our architecture to 
learn cross-axis relationships.  

Each convolutional unit in our VGG16 architecture is 
comprised of four sub-layers: 1) the convolutional operator, 
2) a batch normalization layer [31], 3) a rectified linear unit 
(ReLu) activation layer [53], and 4) a pooling layer [62]. We 
also added a dropout layer [64] to the output of the second 
fully connected layer (p=0.4) to mitigate overfitting. An il-
lustration of our network architecture is offered in Figure 4 
(showing 3 of 5 convolutional units). The network was im-
plemented using TensorFlow (tensorflow.org) and Keras 
(keras.io). To encourage replication, readers are welcome to 
download our dataset and model code (see Section 5).  

8 EVALUATION  
To quantify the feasibility and robustness of our hand ac-
tivity classifier, we conducted a second user study. To 
properly validate our system, a reliable ground truth was 
needed. Because of the unsupervised nature of our earlier 
experience sampling study, it was not possible to use that 
dataset for an accuracy evaluation (though we use it to 
study false positives, described later). Instead, we employed 
an "obstacle course" methodology [6] – a technique that has 
been reliably used in past research to provide ground truth 
data collection, while emulating natural activities and set-
tings. For this, we selected 25 atomic hand activities (Fig-
ures 1 and 3) from classes identified in our experience 

sampling study (Table 1, bulleted items). We dropped sev-
eral frequent hand activities that were impractical to cap-
ture experimentally, including as eating, cooking, and steer-
ing a vehicle. We integrated our final hand activity set into 
a series of physical tasks that participants completed while 
wearing our smartwatches.  

We recruited 12 people from a public participant pool 
(9 female, mean age 26.6), who were compensated $20 for 
the 90-minute study. Participants were asked to wear our 
smartwatch on their dominant arm. Once comfortable, the 
“obstacle course” began. Each “lap” of the course consisted 
of visiting four stations with physical activities that incor-
porated the 25 hand activities (random order). Participants 
performed each hand activity for at least 15 seconds, and 
they were free to perform them however they saw fit, cap-
turing natural user variation.  

In total, participants completed four laps of our course, 
with three-minute breaks in between. This ensured tem-
poral separation between data collection rounds. Addition-
ally, in between laps three and four, participants were asked 
to remove and then re-wear the smartwatch, again to cap-
ture variation and to mitigate overfitting (common in worn 
sensing systems). A trained observer labeled data using a 
laptop interface immediately after each hand activity was 
performed. This process yielded 2500 labeled instances per 
session, per user, resulting in a total of 120K instances.  

9 RESULTS 

9.1 Per-User Accuracy  
To assess whether accelerometers provide sufficient infor-
mation power to distinguish between dozens of hand ac-
tions, we trained a model using data from laps one and two, 
and tested it with data collected from lap three. Across all 

 
Figure 5. Per-user-trained model confusion matrix. Mean  
accuracy is 95.2% across 25 activities and 12 users. 

 
Figure 4. Our convolutional neural network (CNN) architec-
ture, comprised of several convolutional units (three shown 
here), two fully connected layers, a dropout layer, and a 
softmax. We also apply batch normalization between non-
linear layers (i.e., activations).  



 

participants and 25 hand activities, our system achieved a 
mean per-user accuracy of 95.2% (SD=4.1, max=98.8%, 
chance=4%). See Figure 5 for the confusion matrix. 

9.2 Accuracy Post-Removal  
Too often, worn sensing systems are trained (or calibrated) 
and then tested having never been removed from the user. 
This is artificial, as most wearables are removed daily. Ow-
ing to placement sensitivity for most worn sensors, it also 
tends to lead to artificially impressive results. This experi-
mental effect can be allayed by explicitly including a post-
removal collection round, which not only offers for a more 
realistic estimate of accuracy, but also lets one assess the 
accuracy drop-off. 

Using the same model as before (i.e., trained on laps one 
and two), we evaluated accuracy using data collected from 
lap 4 (i.e., post removal). Overall, our system achieved an 
average accuracy of 88.3% (SD=16.5, max=98.9%, 
chance=4%). The confusion matrix is offered in Figure 6. The 
6.9% drop in accuracy from pre-to-post watch removal was 
much less than we expected and suggests that our signals 
and approach are fairly robust to placement variation. We 
strongly suspect that if additional laps of data were col-
lected following a similar watch removal/replacement pro-
cedure, accuracy would rebound.  

9.3 All-Users Accuracy   
To answer the central question of whether a commodity 
smartwatch accelerometer provides sufficient information 
power to distinguish between a variety of hand activities, 
we ran a lap-fold, cross validation study. For example, we 
trained a model on all user data from on laps 1, 2 and 3, and 
then tested on lap 4 (i.e., 90,000 train, 30,000 test instances). 
We repeated this process for all lap combinations and 

averaged the results. Across all participants, this “all users” 
model achieves a mean accuracy of 90.7% (SD=2.2, 
chance=4%). Figure 7 shows the confusion matrix. 

9.4 Leave-One-User-Out Accuracy (Across User) 
Finally, we ran a leave-one-user-out analysis to investigate 
performance across users. Here, data from one participant 
(laps 1-4) served as a hold-out set, while data from all re-
maining participants are used for training. We repeat this 
process for all users and average the results. Across all par-
ticipants, mean leave-one-out accuracy was 79.2% (SD=6.4, 
max=84.8%). This is a 10% drop compared to the previous 
result (90.7%), which simulated a general model seeded with 
some per-user calibration data (i.e., 1/12th of corpus). 

9.5 False Positive Rejection  
In a worn input system – especially one that is hand-centric 
– it is vital to consider mechanisms for rejecting false posi-
tive events. For this, we take advantage of the per-class con-
fidence scores output from our classifier’s softmax layer. 
When participants performed a (known) hand activity, the 
top ranked class had an average confidence of 98.0%, while 
the second highest ranked class had a mean confidence of 
2%. This significant drop-off suggested that confidence 
could be a good predictor of “unknown-ness”. For example, 
our software could label events as unknown if the most con-
fident class was below 50%. To identify a reasonable confi-
dence threshold, we ran a simulation using our study data 
varying this threshold from 0 to 100%. The results, plotted 
in Figure 8, suggest rejecting events when the top-ranked 
class is under 90% confident, offering a balance between 
false positive rejection and missed detections.  

In addition to the simulation above, we ran another ex-
periment where we trained a model with “negative” 

 
Figure 6. Post-watch removal confusion matrix. Mean  
accuracy is 88.3% across 25 activities and 12 users. 

 
Figure 7. Across-user performance confusion matrix. Mean 
accuracy is 90.7% across our 25 activities and 12 users. 



 

example data extracted from our experience sampling 
study. More specifically, we randomly selected 30K data in-
stances that participants had labeled with hand activities 
not included in our test set of 25 (which included e.g., driv-
ing, smoking and doing makeup). We labeled these diverse 
instances as an “unknown” hand activity class. Next, we 
performed a random 80/20 train-test split on the unknown 
class dataset, and then added this to our all-users model’s 
train and test datasets. After retraining, our model correctly 
predicted (i.e., rejected) 76.0% of the unknown activities, 
while the overall accuracy was 87.9%. If we include the con-
fidence threshold identified in the previous simulation (con-
fidence > 90%), the overall accuracy is 92.2% (with unknown 
detection of 86.3%). Figure 9 provides this confusion matrix; 
note the confusion along the Z column, which we use for 
the unknown class.  

Finally, we also ran a clustering experiment (t-SNE; 
based on the top-3 PCA components of our input data; Fig-
ure 10) to visualize the discriminability of our signals, as it 
may be possible to employ clustering techniques to mitigate 
false positives, where events that are “distant” from known 
hand activity clusters are rejected. This distance-based 
method could also be used to capture negative example 
data, or prompt wearers for labels for future recognition.  

9.6 Sampling Frequency vs. Accuracy 
We ran a final post hoc experiment to investigate the effect 
of accelerometer sampling frequency on classification accu-
racy. For this, we created downsampled versions of our 
original 4kHz data to simulate lower sampling rates: 2kHz, 
1kHz, 500Hz, 250Hz, and 125Hz. As with our 4kHz data, this 
was featurized into three-axis, 0-128 Hz, three-second spec-
trograms. We performed cross-lap validation for each sam-
ple rate (train on one round, test on remaining rounds, four 
rounds total), and combined the results, shown in Figure 11. 
There is a clear, monotonic decrease in accuracy as sample 
rate decreases, with a marked cliff around 500Hz.  

10 LIMITATIONS  
The most immediate limitation of our technique is the need 
for smartwatches to be worn on the active arm. Most often, 
this will be a wearer’s dominant arm, whereas it is more 
common for watches to be worn on the passive arm. How-
ever, detection still works for two-handed activities such as 

 
Figure 8. Precision vs. recall characterizations of our model. 
We can prevent false positive occurrences by setting a con-
fidence value cutoff, but at the expense of missing events. 

 
Figure 10. Clustering results from a t-SNE nonlinear dimensionality reduction (perplexity=40, 5000 iterations, projector.ten-
sorflow.org) on a random subset of our 25 hand activities. Note how less intense activities (e.g., pouring drink, scrolling touch 
screen) cluster together, while more vigorous hand activities (e.g., clapping, scratching and wiping) emerge as distinct groups. 

 
Figure 9. Confusion matrix for a cross-users model with  
unknown class detection. Using confidence thresholds, 
global accuracy is 92.2%, while unknown rejection is 86.3%. 



 

clapping, washing hands, or typing. Detecting events on the 
passive arm is an area we plan to explore in future work. 
We also note that we did not explore simultaneous hand 
activities, though these appear rare for a single hand.  

We also acknowledge that the 25 hand activities we 
evaluated, though large for a recognition study, are a small 
fraction of the ways we engage our arms and hands in the 
real world. As reported earlier, there is an exceptionally 
long tail of hand actions and activities that will certainly 
prove challenging to distinguish. Thus we suggest that fu-
ture work focus on specific activities that can especially 
benefit from computational support (e.g., contextual aware 
assistance [14][38][39][44][58], smoking secession [11], el-
der care [19][59][68], hand-arm vibration syndrome 
(HAVS) [68][69], typing RSI [8]). Fortunately, as classifiers 
become more robust (perhaps through mass adoption of 
consumer smartwatches), over-the-air updates could un-
lock recognition of new classes incrementally.  

Finally, as discussed earlier, our FFTs use long windows, 
both to mitigate noise and capture high-resolution spectral 
data for lower frequencies. As a consequence, we incur a 
latency penalty of a few seconds in recognizing events. For 
extended activities, like eating a meal, where classification 
might trigger devices to enter a “do not disturb” mode, a 
few seconds of latency is acceptable. However, for short-
duration activities, like operating a TV remote control, us-
ers will want relevant information to be pulled up quickly 
(e.g., to make a decision regarding entertainment). Future 

systems will likely want to use smaller windows with vari-
able class confidence thresholds in order to support hand 
activities of longer and shorter durations.  

11 EXAMPLE USE DOMAINS  
Using commodity smartwatches for hand activity recogni-
tion is applicable to a wide range of application scenarios 
that have been well motivated in prior research. We believe 
our work points towards a more practical means to bring 
these use cases closer to feasibility.  

One obvious use for fine-grained hand activity sensing 
is personal informatics [33]. Hand activities are a fine-
grained, contextual channel that naturally complements 
ambulatory state [9]. Fine-grained activity tracing (e.g., 
washing hands, brushing teeth – Figure 12, A & B) has been 
shown to nudge users towards more healthy lifestyles [16], 
and spark personal reflection and social facilitation [22]. A 
system that knows what hands are doing could also have 
many health-related applications. For example, a smart-
watch could track a user's typing behavior to prevent repet-
itive strain injury (RSI) [8]. Likewise, a smartwatch might 
be able to track smoking as part of a cessation regime [11], 
or monitor a construction workers tool use to prevent hand-
arm vibration syndrome (HAVS) [68][69]. Eldercare moni-
toring systems [19][59][68] could also make use of this new 
and nuanced information source.  

There has also been interesting research into automatic 
skill assessment [34][67]. Prior work has looked at musical 
skill acquisition [78], sports performance [52], and rehabil-
itation [4]. Automatic assessment could create opportuni-
ties for in situ feedback and skill-level evaluation [67]. It 
may even be possible to detect skill degradation overtime, 
and the onset of motor impairments such as Parkinson's.  

Most generally, hand activity recognition could unlock 
richer, context-sensitive applications [14][38][39][44][58]. 
Sequences of fine-grained hand activities could also be used 
to infer higher-level human activities. For example, filling a 
kettle, turning on the stove, and then later pouring the ket-
tle, can be indicative of the user making a cup of tea. How-
ever, if hand activities occur out of order (e.g., pouring 

 
Figure 11. Post-hoc analysis of simulated sampling fre-
quency vs. hand activity classification accuracy.  

 
Figure 12. Real-time detection of hand activities can unlock many applications, ranging from personal informatics to skills 
assessment, and in general, power richer context-aware applications. Please also see Video Figure. 



 

water before boiling it), it could suggest e.g., the onset of 
dementia [40]. Hand activities could also be valuable in aug-
menting methods that gauge human interruptibility 
[25][29], for example delaying a notification while a user is 
chopping with a knife (Figure 12C).  

12 CONCLUSION 
We believe there is great value in knowing what activities 
the hands are engaged in to support assistive computational 
experiences. In this paper, we investigated the feasibility of 
such sensing using commodity smartwatches, which are an 
immediately practical means for achieving this vision. Our 
explorations started with an in-the-wild deployment and 
culminated with a controlled lab study. Our classification 
pipeline demonstrates 95.2% accuracy across 25 hand activ-
ities, and can reject unknown hand activities at 86.3% accu-
racy. At a high level, we believe these results bring the 
promise of contextually responsive applications much 
closer to reality, especially as our approach requires no ex-
ternal infrastructure or instrumentation of objects. 
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