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ABSTRACT 
The promise of smart environments and the Internet of 
Things (IoT) relies on robust sensing of diverse environ-
mental facets. Traditional approaches rely on direct or dis-
tributed sensing, most often by measuring one particular 
aspect of an environment with special-purpose sensors. In 
this work, we explore the notion of general-purpose sens-
ing, wherein a single, highly capable sensor can indirectly 
monitor a large context, without direct instrumentation of 
objects. Further, through what we call Synthetic Sensors, we 
can virtualize raw sensor data into actionable feeds, whilst 
simultaneously mitigating immediate privacy issues. We 
use a series of structured, formative studies to inform the 
development of new sensor hardware and accompanying 
information architecture. We deployed our system across 
many months and environments, the results of which show 
the versatility, accuracy and potential of this approach. 
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INTRODUCTION  
Smart, sensing environments have long been studied and 
sought after. Today, such efforts might fall under catch-
phrases like the “smart home” or the “internet of things”, 
but the goals have remained the same over decades—to 
apply sensing and computation to enhance the human expe-
rience, especially as it pertains to physical contexts (e.g., 
home, office, workshop) and the amenities contained with-
in. Numerous approaches have been attempted and articu-
lated, though none have reached widespread use to date. 

One option is for users to upgrade their environments with 
newly released “smart” devices (e.g., light switches, kitchen 
appliances), many of which contain sensing functionality. 
However, this sensing is generally limited to the appliance 
itself (e.g., a smart light switch knows if it is on or off) or 
when it serves its core function (e.g., a thermostat sensing 
occupancy). Likewise, few smart devices are interoperable, 
thus forming silos of sensed data that thwarts a holistic ex-
perience. Instead of achieving a smart home, the best one 
can hope for—at least in the foreseeable future—are small 
islands of smartness. This approach also carries a significant 
upgrade cost, which so far has proven unpopular with con-
sumers, who generally upgrade appliances piecemeal.  

To sidestep this issue, we are now seeing aftermarket prod-
ucts (e.g., [39,41,56]) and research systems (e.g., [36,45, 
54]) that allow users to distribute sensors around their envi-
ronments to capture a variety of events and states. For ex-
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Figure 2. This kitchenette example typifies the ethos of 
general-purpose sensing, wherein one sensor (orange) 
enables the detection of many environmental facets, in-
cluding rich operational states of a faucet (A), soap dis-
penser (B), paper towel dispenser (C), dishwasher (D), 
kettle (E), microwave (F) and refrigerator (G). See also the 
Video Figure for a real-world demonstration of this scene. 

 

 
Figure 1. This high-level taxonomy demarks  

canonical approaches in environmental sensing. 



ample, Sen.se’s Mother product [52] allows users to attach 
“universal” sensor tags to objects, from which basic states 
can be discerned and tracked over time (e.g., a tag on a cof-
fee machine can track how often coffee is made). This ap-
proach offers great flexibility, but at the cost of having to 
instrument every object of interest in an environment. 

As we will discuss, a single room can have dozens of com-
plex environmental facets worth sensing, ranging from “is 
the coffee brewed” to “is the tap dripping.” A single home 
might have hundreds of such facets, and an office building 
could have thousands. The cost of hundreds of physical 
sensors is significant, not including the even greater cost of 
deployment and maintenance. Moreover, extensively in-
strumenting an environment in this fashion will almost cer-
tainly carry an aesthetic and social cost [3].  

A lightweight, general-purpose sensing approach could 
overcome many of these issues. Ideally, a handful of “su-
per” sensors could blanket an entire environment – one per 
room or less. To be minimally obtrusive, these sensors 
should be capable of sensing environmental facets indirectly 
(i.e., from afar) and be plug and play – forgoing batteries by 
using wall power, while still offering omniscience despite 
potential sub-optimal placement. Further, such a system 
should be able to answer questions of interest to users, ab-
stracting raw sensor data (e.g., z-axis acceleration) into ac-
tionable feeds, encapsulating human semantics (e.g., a 
knock on the door), all while preserving occupant privacy. 

In this paper, we describe the structured exploration process 
we employed to identify opportunities in this problem do-
main, ultimately leading to the creation of a novel sensing 
system and architecture that achieves most of the properties 
described above. First, we provide a comprehensive review 
of sensors, both academic and commercial, that claim some 
level of generality in their sensing. Similarly, we conducted 
a probe into what environmental facets users care to know, 
and at what level of fidelity has acceptable privacy trade-
offs. We then merged what we learned from this two-
pronged effort to create a novel sensor tag (Figures 3 and 4). 

We deployed our sensor tags across many months and envi-
ronments to collect data and investigate ways to achieve our 
desired versatility, accuracy and privacy preservation. This 
directly informed the development of a novel, general-
purpose, sensing architecture that denatures and virtualizes 
raw sensor data, and through a machine-learning pipeline, 
yields what we call Synthetic Sensors. Like conventional 
sensors, these can be used to power interactive applications 
and responsive environments. We conclude with a formal 
evaluation, deploying our entire sensing pipeline, followed 
by a digest of significant findings and implications. 

RELATED APPROACHES 
A full review of the literature on environmental sensing is 
beyond the scope of this paper. However, to help illustrate 
this application landscape, we created a Sensor Utility Tax-
onomy shown in Figure 1. Along the y-axis is the number of 

distinct sensed facets (e.g., states, events), while the x-axis 
is the number of sensors needed to achieve this output.  

Special-Purpose Sensors 
The most intuitive and prevalent form of sensing is to use a 
single sensor to monitor a single facet of an environment. 
For example, in UpStream [32] and WaterBot [2], a micro-
phone is affixed to a faucet so that water consumption can 
be inferred (which in turn is used to power behavior-
changing feedback). Similarly, efficient management of 
HVAC has been demonstrated through room-level tempera-
ture [30] and occupancy sensors [50].  

Special-purpose sensors tend to be robust for well-defined, 
low-dimensional sensing problems, such as occupancy sens-
ing and automatically opening doors. However, this rela-
tionship is inherently a one-sensor to one-sensed-facet rela-
tionship (i.e., one-to-one; Figure 1, bottom left quadrant). 
For example, an occupancy sensor can only detect occupan-
cy, and a door ajar sensor can only detect when a door is 
open. There is no notion of generality; each desired facet is 
monitored by a specific and independent sensor.  

Distributed Sensing Systems 
It is also possible to deploy many sensors in an environ-
ment, which can be networked together, forming a distrib-
uted sensing system [26]. This approach can be used to en-
large the sensed area (e.g., occupancy sensing across an 
entire warehouse) or increase sensing fidelity through com-
plementary readings (e.g., seismic events [5,58]). The dis-
tributed sensors can be homogenous [14] (e.g., an array of 
identical infrared occupancy sensors) or heterogeneous (i.e., 
a mix of sensor types) [54,55,61]. Also, the array can sense 
one facet (e.g., fire detection) or many (e.g., appliance use).  

A home security system is a canonical example of a hetero-
geneous distributed system, where door sensors, window 
sensors, noise sensors, occupancy sensors and even cameras 
work together for a singular classification: is there an in-
truder in the home? This is a many-to-one scheme, and thus 
occupies the bottom right of our Figure 1 taxonomy. Con-
versely, for example, Tapia et al. [54] use a homogenous 
array of 77 magnetic sensors to detect object interactions 
throughout an entire house, and thus is a many-to-many 
scheme (upper right in Figure 1). Thus, distributed systems 
occupy the entire right side of our Figure 1 taxonomy. 

A distributed sensing system, as one might expect, is highly 
dependent on the quality of its sensor distribution. Achiev-
ing the necessary sensor saturation often implies a sizable 
deployment, perhaps dozens of sensors for even a small 
context, like an office. This can be costly; with sensors of-
ten costing $30 or more, even small deployments can be-
come unpalatable for consumers. Moreover, as the number 
of sensors grow, there is a danger of becoming invasive in 
sensitive contexts such as the home [8,16,28,54].  

Infrastructure-Mediated Sensing 
To reduce deployment cost and social intrusiveness, re-
searchers have investigated the installation of sensors at 



strategic infrastructure probe points. For example, work by 
Abott [1], Hart [22,23] and Gupta [20] used sensors coupled 
to a building’s power lines to detect “events” caused by 
electrical appliances. Since home electrical lines are shared, 
a single sensor can observe activities across an entire house.  

This infrastructure-mediated sensing approach has also 
been applied to e.g., HVAC [42], plumbing [16,17], natural 
gas lines [10] and electric lighting [19]. In all of these cases, 
a sensor was installed at a single probe point, enabling ap-
plication scenarios that would otherwise require more costly 
distributed instrumentation of an environment. Although 
considerably more general purpose than the other approach-
es we have discussed, this approach is still constrained by 
the class of infrastructure it is coupled to. For example, a 
plumbing-attached sensor can detect sink, shower and toilet 
use, but not microwave use. Thus, we denote it as a one-to-
few technique in our taxonomy (left-middle). 

Direct vs. Indirect Sensing 
Many of the aforementioned systems utilize direct sensing, 
that is, a sensor that physically couples to an object or infra-
structure of interest. For example, most window sensors 
need to be physically attached to a window. This approach 
is popular as it generally yields excellent signal quality. 
However, powering such sensors can be problematic, as 
most objects do not have power outlets. Instead, such sys-

tems rely on batteries, which must be periodically recharged 
[10,16,17,36,54,61]. Other systems avoid this by requiring 
access to a power outlet [19,20], though this limits possible 
sensor locations or requires cords be run across the envi-
ronment—neither of which is desirable. 

Fortunately, it is also possible to sense state and events indi-
rectly, without having to physically couple to objects. For 
example, work by Kim and colleagues [29] explored sens-
ing of appliance usage with a sensor installed nearby. When 
an appliance is in different modes of operation (e.g., refrig-
erator compressor running, interior lights on/off), it emits 
characteristic electromagnetic noise that can be captured 
and recognized. Similarly, Ward and colleagues [59] were 
able to recognize tool use in a workshop through acoustic 
sensing. Indeed, many sensors are specifically designed for 
indirect sensing, including non-contact thermometers, 
rangefinders, and motion sensors. 

Overall, indirect sensing allows for greater flexibility in 
placement, often allowing sensors to be better integrated 
into the environment or even hidden, and thus less aestheti-
cally and socially obtrusive. Ideally, it is possible to relocate 
to a nearby wall power outlet, eliminating the need for bat-
teries. However, this typically comes at the cost of some 
sensing fidelity – the further you move away from an object 
or area of interest, the harder it becomes to sense and seg-
ment events. Moreover, some sensors require line-of-sight, 
which can make some sensor placements untenable. 

General-Purpose Sensing 
Increasingly, sensor “boards” are being populated with a 
wide variety of underlying sensors that affords flexible use 
(Table 1). Such boards might be considered general pur-
pose, in that they can be attached to a variety of objects, and 
without modification, sense many facets. However, this is 
still ultimately a one-sensor to one-object mapping (e.g., 
Sen.se’s Mother [52]), and thus is more inline with the ten-
ets of a distributed sensing system (many-to-many). 

The ideal sensing approach occupies the top-left of our tax-
onomy, wherein one sensor can enable many sensed facets, 
and more specifically, beyond any one single instrumented 
object. This one-to-many property is challenging, as it must 
be inherently indirect to achieve this breadth. The ultimate 
embodiment of this approach would be a single, omniscient 
sensor capable of digitizing an entire building. 

Computer vision has come closest to achieving this goal. 
Cameras offer rich, indirect data, which can be processed 
through e.g., machine learning to yield sensor-like feeds.  
There is a large body of work in video-based sensing (see 
e.g., [15,40,53]). Achieving human-level abstractions and 
accuracy is a persistent challenge, leading to the creation of 
mixed CV- and crowd-powered systems (e.g., [6,18,35]).  

Most closely related to our current work is Zensors [34], 
which explicitly used a sensor metaphor (as opposed to a 
Q/A metaphor [6]). Using a commodity camera, a wide va-
riety of environmental facets could be digitized, such as 

 
Table 1. An inventory of research and commercial sensors 
offering varying degrees of general-purpose sensing. Our 
prototype sensor is the union of these capabilities, with 
the notable absence of a camera. 



“how many dishes are in the sink?” To achieve this level of 
general-purposeness, Zensors initially uses crowd answers, 
which are simultaneously used as labels to bootstrap ma-
chine learning classifiers, allowing for a future handoff.  

While these CV-based sensing approaches are powerful, 
cameras have been widely studied and recognized for their 
high level of privacy invasion and social intrusiveness [3, 
7,8,28], and thus carry a heavy deployment stigma. To date, 
this has hindered their use in many environments ripe for 
sensing, such as homes, schools, care facilities, industrial 
settings and work environments. In this work, we show that 
we can achieve much of the same sensing versatility and 
accuracy without the use of a camera. 

EXPLORATORY STUDIES 
As a first step in our exploration of general purpose sensing, 
we conducted two focused probes. This grounded basic as-
sumptions and informed the design of our system.   

Survey of Sensor Boards 
There is an emerging class of small, screen-less devices 
equipped with a array of sensors and wireless connectivity, 
often described as “sensor boards” or “tags”. For example, 
the Texas Instruments SimpleLink SensorTag packs five 
sensors into a matchbook-sized, coin-battery-powered pack-
age [56]. These devices are intended to facilitate “quick and 
easy prototyping of IoT experiences.” We performed an 
extensive survey of these boards, drawn from commercial 
and academic systems [4,9,14,16,17,31,39,47,52,56], allow-
ing us to build an inventory of sensing capabilities. The 
high level results of our search are offered in Table 1.  

Facet & Privacy Elicitation Study 
In our second probe, we sought to better understand the 
perceived utility of a “perfect” and omniscient, general-
purpose sensor. For this, we conducted an elicitation study 
(10 interaction design Masters students, 4 female, mean age 
24.4, two hours, paid $20) that allowed us to gather facets 
of interest about six local environments (a common area, 
kitchen, workshop, classroom, office and bathroom). In 
total, following a group affinity diagraming exercise, 107 
unique facets were identified. We also used this opportunity 

to informally inquire about the perceived privacy implica-
tions of such sensed facets. During discussion, participants 
unanimously desired that “sensor data be stored in a way 
that cannot identify individuals.” We asked participants to 
rank facet privacy on a scale of 0 (no privacy danger) to 5 
(high privacy danger). Unsurprisingly, facets along “who” 
dimensions (mean 3.76, SD 1.34) ranked significantly high-
er (p<0.01) in their privacy invasiveness than those along 
“what” dimensions (mean 0.92, SD 1.02). Reinforcing our 
initial notion, and what many others have also found [3,7], 
participants uniformly rejected the use of cameras.  

CUSTOM SENSOR TAG 
We set out to design a novel sensor tag (Figures 3 and 4), 
which integrates the union of the sensing capabilities across 
all of the devices in Table 1, minus a camera. Not only does 
this serve as an interesting vehicle for investigation (e.g., 
what sensors are most accurate and useful?), but also an 
extreme embodiment of board design using many low-level 
sensors – one that we hoped could approach the versatility 
of camera-based approaches, but without the stigma and 
privacy implications. We incorporated nine physical sensors 
capturing twelve distinct sensor dimensions (see Figure 3).  

The heart of our sensor tag design is a Particle Photon 
STM32F205 microcontroller with a 120MHz CPU. We 
strategically placed sensors on the PCB to ensure optimal 
performance (e.g., ambient light sensor faces outwards), and 
we spatially separated analog and digital components to 
isolate unintended electrical noise from affecting the per-
formance of neighboring components. For connectivity, we 
considered industry standards such as Ethernet, ZigBee, and 
Bluetooth, but ultimately chose WiFi for its ubiquity, ease-
of-setup, range and high bandwidth.  

Finally, our board uses a Type A USB 2.0 connector, which 
can be used for power (e.g., with a DC wall wart) or to de-
ploy software. We intentionally designed our board so that 
it can be easily plugged-in to a power outlet (in line with 
our goals of being maintenance free). From this placement, 
we hope to be “omniscient” through clever signal pro-
cessing and machine learning. For this reason, power con-
sumption was not a design objective (for reference: approx-
imately 120mA at 5V when fully streaming). 

 
Figure 4. Photo of our general-purpose sensor tag. 

 
Figure 3. Our sensor tag features nine discrete sensors,  

able to capture twelve unique sensor dimensions.  



PILOT DEPLOYMENT & FINDINGS 
At this stage of development, our sensor tags provided a 
raw stream of high fidelity data (e.g., an audio-quality mi-
crophone stream), which was logged to a secured server. 
Two questions were paramount: 1) was the captured sensor 
data sufficiently descriptive to enable general-purpose sens-
ing? And 2) was the sensed data adequately preserving oc-
cupant privacy, especially identity?  

To explore possible tradeoffs, we deployed five sensor tags 
across thirteen diverse environments we controlled for a 
collective duration of 6.5 months. During this period, we 
iteratively refined our sensor’s software, affording us the 
ability to test parameters and system features live and in 
real world settings. This led to several critical insights: 

Immediate Featurization. We found there was little ad-
vantage in transmitting raw data from our sensor boards, 
and instead, all data could be featurized on-sensor. Not only 
does this reduce network overhead, but it also denatures the 
data, better protecting privacy while still preserving the es-
sence of the signal (with appropriate tuning). In particular, 
we selected features (discussed later) that do not permit 
reconstruction of the original signal.  

Sensing Fidelity. Our pilot deployments showed that our 
sensor tags were capable of capturing rich, nuanced data. 
For example in Figure 5, we can see not only the coarse 
event of “microwave in use”, but also its door being opened  
and closed, as well as the completion chime, revealing state. 
In general, we found that sensed signals could be broadly 
categorized into three temporal classes: sub-second, se-
conds-to-minutes, and minutes-to-hours scale. For example, 
a knock on a door lasts a fraction of a second, and so for a 
sensor to capture this (e.g., acoustically), it must operate at a 
sampling interval capable of digitizing sub-second events. 
On the other hand, other facets change slowly, such as room 
temperature and humidity.  

In response, we tuned our raw sensor sampling rates over 
the course of deployment, collecting data at the speed need-

ed to capture environmental events, but with no unnecessary 
fidelity. Specifically, we sample temperature, humidity, 
pressure, light color, light intensity, magnetometer, Wifi 
RSSI, GridEye and PIR motion sensors at 10Hz. All three 
axes of the accelerometer are sampled at 4 kHz, our micro-
phone at 17 kHz, and our and EMI sensor at 500 kHz. Note 
that when accelerometers are sampled at high speed, they 
can detect minute oscillatory vibrations propagating [33] 
through structural elements in an environment (e.g., dry-
wall, studs, joists), very much like a geophone. 

Sensor Activation Groups. Our pilot deployments revealed 
that events tend to activate particular subsets of sensor 
channels. For instance, a “lights on” event will activate the 
light sensor, but not the temperature or vibration sensors. 
Similarly, a door knock might activate the microphone and 
x-axis of our accelerometer, but not our EMI sensor. We use 
“activate” to mean any statistical deviation from the envi-
ronmental norm. As we will discuss, we can leverage these 
sensor activation groups to improve the system’s robustness 
to noise by only dispatching events to our classification 
engine if the appropriate set of sensors are activated. 

SYNTHETIC SENSORS 
Our exploratory studies revealed that while low-level sensor 
data can be high-fidelity, it often does not answer users’ 
true intent. For example, the average user does not care 
about a spectrogram of EMI emissions from their coffee 
maker – they want to know when their coffee is brewed. 
Therefore, a key to unlocking general-purpose sensing is to 
support the “virtualization” of low-level data into semanti-
cally relevant representations. We introduce a sensing ab-
straction pattern that enables versatile, user-centered, gen-
eral-purpose sensing, called Synthetic Sensors.  

In this framework, sensor data exposed to end-users is “vir-
tualized” into higher-level constructs, ones that more faith-
fully translate to users’ mental models of their contexts and 
environments. This “top-down” approach shifts the burden 
away from users (e.g., “what can I do with accelerometer 

 
Figure 5. Stacked spectrograms of our accelerometer (at 4 kHz sampling rate), microphone (17 kHz) and EMI (500 kHz) 

sensors. A variety of events are illustrated here, with many signals easily discerned by the naked eye. For example, when 
our microwave is closed, its internal light flicks off, creating a brief EMI spike. 

 



data?”) and unto the sensing system itself (e.g., user demon-
strates a running faucet while the system learns its vibra-
tional signature). Such output better matches human seman-
tics (e.g., “is the laser cutter exhaust running?”) and end-
user applications can use this knowledge to power rich, con-
text-sensitive applications (e.g., “if exhaust is turned off, 
send warning about fumes”). 

Overall Architecture 
First, as already discussed, we detect events that manifest in 
an environment through low-level sensor data. For example, 
when a faucet is running, a nearby sensor tag can pick up 
vibrations induced by service pipes behind the wall, as well 
as characteristic acoustic features of running water. Next, a 
featurization layer converts raw sensor data into an abstract 
and compact representation. This happens in our embedded 
software, which means raw data never leaves the sensor tag. 
Finally, the “triggered” sensors form an activation group 
(e.g., X- and Z-axis of accelerometer, plus microphone), 
which becomes the input to our machine learning layer.  

We support two machine learning modalities: manual train-
ing (e.g., via user demonstration and annotation using a 
custom interface we build; see Video Figure) or automatic 
learning (e.g., through unsupervised clustering methods). 
The output of the machine learning layer is a “synthetic 
sensor” that abstracts low-level data (e.g., vibration, light 
color, EMI sensors) into user-centered representations (e.g., 
coffee ready sensor). Finally, data from one or more syn-
thetic sensors can be used to power end-user applications 
(e.g., estimating kitchen water usage, sending a text when 
the laundry dryer is done).  

On-Board Featurization 
Data from our high-sample-rate sensors are transformed 
into a spectral representation via a 256-sample sliding win-
dow FFT (10% overlapping), ten times per second. Note 
that phase information is discarded. Our raw 8x8 GridEye 
matrix is flattened into row and column means (16 features). 
For our other low-sample-rate sensors, we compute seven 
statistical features (min, max, range, mean, sum, standard 
deviation and centroid) on a rolling one-second buffer (at 
10Hz). The featurized data for every sensor is concatenated 
and sent to a server as a single data frame, encrypted with 
128-bit AES. 

Event Trigger Detection 
Once data is sent, we perform automatic event segmentation 
on the server side. To reduce the effects of environmental 
noise, the server uses an adaptive background model for 
each sensor channel (rolling mean and standard deviation). 
All incoming streams are compared against the background 
profile using a normalized Euclidean distance metric (simi-
lar to [38]). Sensor channels that exceed their individual 
thresholds are tagged as "activated”. We also apply hystere-
sis to avoid detection jitter. Thresholds were empirically 
obtained by running sensors for several days while tracking 
their longitudinal variances. All triggered sensors form an 
activation group. 

Of note, classification of simultaneous events is possible, 
especially if the activation groups are mutually exclusive. 
For overlapping activation groups, cross talk between 
events is inevitable. Nonetheless, our evaluations suggest 
that many events contain discriminative signals even when 
using shared channels.  

Server-Side Feature Computation 
The set of activated sensors serves as useful metadata to 
describe an event. Likewise, we use activation groups to 
assemble an amalgamated feature vector (e.g., a boiling 
kettle event combines features extracted from the GridEye, 
accelerometer and microphone). Then, if any high-sample-
rate sensors were included, we compute additional features 
on the server. Specifically, for vibrations, acoustics and 
EMI, we compute band ratios of 16-bin downsampled spec-
tral representations (120 additional features), along with 
additional statistical features derived from the FFT (min, 
max, range, mean, sum, standard deviation, and centroid). 
For acoustic data, we also compute MFCCs [63]. Data from 
all other sensors are simply normalized. Finally, these fea-
tures are fed to a machine learning model for classification. 

Learning Modalities 
In manual mode, users train the system by demonstrating an 
event of interest, à la “programming by demonstration” 
[11,24,25], supplying supervised labeled data (see Video 
Figure for an interactive demonstration). The feature sets, 
along with their associated labels are fed into a plurality-
based ensemble classification model (implemented using 
the Weka Toolkit [21]), similar to the approach used by 
Ravi et al. [45]. We use base-level SVMs trained for each 
synthetic sensor, along with a global (multi-class) SVM 
trained on all sensors. This ensemble model promotes ro-
bustness against false positives, while supporting the ability 
to detect simultaneous events.  

In automatic learning mode, the system attempts to extract 
environmental facets via unsupervised learning techniques. 
We use a two-stage clustering process. First, we reduce the 
dimensionality of our data set using a multi-layer perceptron 
configured as an AutoEncoder [27], with five non-
overlapping sigmoid functions in the hidden layer. Because 
the output of the AutoEncoder is the same as the input val-
ues, the hidden layer will learn the best reduced representa-
tion of the feature set. Finally, this reduced feature set is 
used as input to an expectation maximization (EM) cluster-
ing algorithm. These were implemented using python scikit-
learn [43], Weka [21] and Theano [57]. 

EVALUATION  
We explored several key questions to validate the feasibility 
of synthetic sensors. Foremost, how versatile and generic is 
our approach across diverse environments and events? Are 
the signals captured from the environment stable and con-
sistent over time? How robust is the system to environmen-
tal noise? And finally, once deployed, how accurate can 
synthetic sensors be?  



Deployment 
To answer these questions, we conducted a two-week, in 
situ deployment across a range of environmental contexts. 
Specifically, we returned to five of the six locations we ex-
plored in our Facet & Privacy Elicitation Study: a kitchen 
(~140 sq. ft.), an office (~71 sq. ft.), a workshop (~446 sq. 
ft.), a common area (~156 sq. ft.) and a classroom (~1000 
sq. ft.), spanning an entire building at our institution. In 
each room, a single sensor tag was plugged into a centrally 
located, available, electrical wall socket. Building occupants 
went about their daily routines uninterrupted. Each tag ran 
continuously for roughly 336 hours (for a cumulative period 
of roughly 1,700 hours). Featurized data was streamed and 
stored to a secure local server for processing and analysis. 

Versatility of General Purpose Sensing  
We examined the list of environmental facet questions (i.e., 
synthetic sensors) that our earlier study participants elicited, 
which we pruned to facets that could be practically sensed. 
Specifically, we removed facets that required a camera (e.g., 
“what is written on the whiteboard?”), and likewise elimi-
nated facets that did not manifest physical output that could 
be sensed (“where did I leave my keys?”). This pruned the 
original set from 107 facets to 59. From the remaining fac-
ets, we selected 38 to be our test synthetic sensors (Table 2).  

Signal Fidelity and Sensing Accuracy 
To understand the fidelity and discriminative power of the 
signals produced from our sensor tags, we conducted an 
accuracy evaluation, spanning multiple days and locations. 
In each test location, we demonstrated instances of each 
facet of interest (mean repeats = 6.0, max 8). For instance, 
in the workshop, we collected data for the “Laser Cutter 
Exhaust” synthetic sensor by turning on and off the exhaust 
several times. We collected data every day for a week, 
which was labeled offline using a custom tool. This yielded 
a total of ~150K labeled data instances spanning our 38 
synthetic sensors located in five locations. The labeling pro-
cess took approximately one hour per sensor for a day’s 
worth of data. This task was tedious, but critical, as it estab-
lished a ground truth from which to assess accuracy. Note 
that we also captured “null instances” (i.e., no event) that 
were derived from captured background instances. 

To evaluate accuracy, we started by training the classifier 
using data from day 1, and then testing the classifier using 
data collected on day 2. This effectively simulates, post hoc, 
what the accuracy would have been on day 2. We then re-
peat this process, using data from days 1 and 2 for training, 
and testing on day 3’s data. We continue this process up to 
day 7, which is trained on data from days 1 through 6. In 
this way, we can construct a learning curve, which reveals 
how accuracy would improve over time (Figure 6).  

Across our 38 synthetic sensors in five locations, spanning 
all seven days, our system achieved an average sensing ac-
curacy of 96.0% (SD=5.2%). Note that the accuracy on day 
2 is already relatively high (91.5%, SD=11.3%). We also 
reiterate that a "day" in this context does not imply a "day’s 

worth" of data, but simply the demonstrated instances for a 
day (i.e., a few minutes of demonstration data per sensor).  

Sensing Stability Over Time 
It is possible for environmental facets to change their physi-
cal manifestation over time (due to e.g., ambient air temper-
ature, or shifts in physical position). Therefore, it is im-
portant to explore whether signals are sufficiently reliable 
over time to enable robust synthetic sensors. Thus, in addi-
tion to collecting data on days 1 through 7, we also collect-
ed and labeled one additional round of data on day 14. This 
weeklong separation (without intervening data collection 
days) is a useful, if basic test of signal stability.  

More specifically, we trained our system on data from days 
1 though 7, and tested on day 14’s data. Overall, across our 
38 synthetic sensors in five locations, the system was 98.0% 
accurate (SD=2.1%), similar to day 7’s results, showing no 

Table 2. List of synthetic sensors studied across our two-
week deployment. Percentages are based on a sensor’s 

feature merit (i.e., normalized SVM weights).  

 
Figure 6. Learning curves for our synthetic sensor  

deployment, combined per test location. 



degradation in accuracy. Day 14’s results are also plotted in 
Figure 6, and we further provide the full confusion matrices 
for each room’s sensors in Figure 7. Note that a vast majori-
ty of the synthetic sensors perform well – near or at 100% 
accuracy – with just three sensors performing poorly (in the 
60% accuracy range). Overall, we believe these results are 
encouraging and suggest that our sensors boards and syn-
thetic sensors do indeed achieve their general-purpose aim.  

Noise Robustness  
Human environments are noisy, not just in the acoustic 
channel, but all sensor channels. A robust system must dif-
ferentiate between true events and a much larger class of 
false triggers. In response, we conducted a brief noise ro-
bustness study that examined the behavior of synthetic sen-
sors when exposed to deliberately noisy conditions.  

We selected a high-traffic location (common area) and 
manually monitored the performance of our classifier 
(trained on data from days 1-7). An experimenter logged 
location activity in vivo, while simultaneously monitoring 
classification output. The range of activities observed was 
diverse, from "sneezing" and "clipping nails", to "people 
chatting" and a "FedEx delivery." The experimenters also 
injected their own events, including jumping jacks, whis-
tling, clapping, and feet stomping.  

The observation lasted for two hours, and within this period, 
the experimenter recorded 13 false positive triggers. Admit-
tedly, a longer duration would have been preferable, but the 
labor involved to annotate a longer period was problematic 
at the time of the study. Regardless, we believe this result is 
useful and promising, though the false positive rate is higher 
than we hoped. It suggests future work is needed on mitigat-
ing false positives, perhaps by supplying more negative 
examples or employing more sophisticated ML techniques, 
like dropout training. 

Automatic Event Learning 
We performed a preliminary evaluation of our system’s 
ability to automatically extract and identify events of inter-
est without user input (i.e., segmentation or labeling). As 
briefly discussed in the implementation section, we used a 
two-step process: multi-layer perceptron followed by an EM 
clustering algorithm. To evaluate the effectiveness of auto-
generated clusters, we used labeled data from days 1 though 
7 and performed a cluster membership evaluation. 

We found mixed results, ranging from a high of 88.1% 
mean accuracy in the classroom location (five synthetic 
sensors, thus chance=20%) to a low of 30.0% in the work-
shop setting (chance=11%). In most locations, clusters were 
missing for some user-labeled facets, and often featured 
scores of unknown clusters for things the system had 
learned by itself. Much future work could be done in this 
area. More sophisticated clustering and information retriev-
al techniques could help [48,60], as could correlating sensor 
data with known events and activities (e.g., room calendar) 
to power a knowledge-driven inference approach [44,62].  

SENSOR TYPE & SAMPLE RATE IMPLICATONS 
Most of the synthetic sensors we have described so far have 
been sub-second scale events, and thus most heavily rely on 
our board’s high-sample-rate sensors. This bias can be read-
ily seen in Table 2, which provides a weighted breakdown 
of merit as calculated by SVM weights when all features are 
supplied to the classifier. Three sensors in particular stand 
out as most useful: microphone (17 kHz sample rate), accel-
erometer (4 kHz) and EMI (500 kHz) – the three highest 
sample rate sensors on our board.  

Foremost, we stress that this result should not be over gen-
eralized to suggest that using these three sensors alone are 
sufficient for general purpose sensing. In many cases, the 
other sensors provide useful data for e.g., edge cases, and 
can make the difference between 85% and 95% accuracy.  
Second, as already noted, the sensor questions elicited from 
our participates were heavily skewed towards instantaneous 
events, chiefly because we spent roughly ten minutes in 
each location during the Facet & Privacy Elicitation study, 
which likely inhibited participants from fully considering 
environmental facets that might change over longer dura-
tions (like a draft in a poorly sealed window).  

Finally, every environment is different and there is no doubt 
a long tail of questions that could be asked by end users. 
Although microphone, accelerometer and EMI might enable 
90% of possible sensor questions, to be truly general pur-
pose, a sensor board will need to approach 100% coverage. 
You can see in Table 2 that other, infrequently-used sensors 
are occasionally critical in classifying some questions, for 
example, the GridEye sensor for detecting kettle use (Table 
2A), and the light color sensor for detecting when the class-
room lights are on/off (Table 2, M/L). If these two sensors 

 
Figure 7. Confusion matrices for the 38 synthetic sensors we deployed across our five test locations. Results shown here  

(% accurate) are from training on data from days 1 through 7, and testing on data from day 14. Use Table 2 as key for names. 



were dropped from our board, these two questions would 
likely have been unanswerable (at acceptable accuracies). 

As an initial exploration of how other sensors can come into 
play – especially for sensing longer-duration environmental 
facets – we ran a series of small, targeted deployments in 
mostly new locations and at different times of the year. We 
plot raw data and highlight events of interest to underscore 
the potential utility of other sensor channels.   

Room Temperature Fluctuation. We used our sensor tag to 
capture temperature variation in a room with a window-
mounted air conditioner on a warm summer’s night (Figure 
8). Note the accelerated slope of the temperature when the 
AC is turned on and off. Another example of HVAC cy-
cling can be seen in Figure 15 (note also the change in be-
havior when the thermostat target temperature is moved 
from 70 to 72°). 

Non-Contact Temperature Sensing. The GridEye sensor 
acts like a very low-resolution thermal camera (8×8 pixels), 
which is well suited for detecting localized thermal events. 
For example, in our kitchen location, the kettle occupies 
part of the sensor’s field of view, and as such, the radiant 
heat of the kettle can be tracked, from which its operational 
state can be inferred (Figure 9).  

Light Color Sensing. We also found ambient light color to 
be a versatile sensing channel. For example, colors cast by 
artificial lighting (Figures 12-15), or sunrise/sunset (Figure 
10), can provide clues about the state of the environment 
(e.g., bedroom window open, office door closed, TV on). 

Additionally, many devices communicate their operational 
states through color LEDs (Figure 11), which can be cap-
tured and aid classification of different states.  

Multiple Sensors. Figures 12 through 15 offer more com-
plex examples of how multiple sensors can work together to 
characterize environments. For example, in Figure 13, we 
can see that opening a garage door causes a temperature, 
color and illumination change in the garage. Having multi-
ple confirmatory signals generally yields superior classifica-
tion accuracies. Figures 14 and 15 show how high- and low-
sample-rate sensors can work together to capture the state of 
a car and an apartment.   

SECOND-ORDER SYNTHETIC SENSORS 
Up to this point, the synthetic sensors that we have dis-
cussed all operate in a binary fashion (e.g., is the “faucet 
running?” Possible outputs: yes or no). These are what we 
call first-order synthetic sensors. We can build more com-
plex, non-binary, second-order synthetic sensors by lever-
aging first order outputs as new ML features. We explored 
three second-order classes: state, count and duration. The 
first-order sensors used in this section were trained using 
data from days 1 though 7 in the deployment study. 

State  
Two or more first-order synthetic sensors can be used as 
features to produce a second-order synthetic sensor for 
tracking the multi-class state of an object or environment. 
For example, in our two-week deployment study, we had 
five first-order synthetic sensors about a single microwave 

 
Figure 12: Data captured over a ~24 hour period in an  

outdoor parking lot on a warm summer day. 

 
Figure 10: Light color captured over a one-hour period from 

an example sunrise (top) and sunset (bottom).  

 
Figure 11: Various states of a MakerBot Replicator 2X over a 

~30 minute period as captured by a light color sensor.  

 
Figure 13. Data captured in a two-car garage 

 over a ~36 hour period during winter. 

 
Figure 8: Room temperature variation caused by an AC unit. 

 
Figure 9: Heat radiating from the kettle can be  

captured by the GridEye sensor. 

 



(running, keypad presses, door opened, door closed, com-
pletion chime; see Table 2). From these five, individual, 
binary-output, first-order synthetic sensors, we created a 
microwave state, second-order sensor (five-classes: availa-
ble, door ajar, in-use, interrupted, or finished; Figure 16). 
For example, when the completion chime is detected, the 
state will change from in-use to finished, and will stay fin-
ished until a door close event is detected, after which the 
items inside are presumed to have been removed, and the 
state is set to available.   

To test our microwave-state sensor’s accuracy, we manually 
cycled the microwave through its five possible states (ten 
repetitions per state), and recorded if it matched the classifi-
er’s output. Overall, the sensor was 94% accurate. 

Count   
In addition to states, it is also possible to build second-order 
synthetic sensors that can count the occurrence of first-order 
events. For example, we could use a door opened first-order 
sensor to track how many times a restroom is accessed. 
This, in turn, could be used to trigger a message to facilities 
staff to inspect the restroom every 100 visits.  

As a real-world demonstration, we built a second-order 
count sensor that tracked the number of towels dispensed by 
the dispenser in our kitchen location. To test this counter’s 

accuracy, we manually dispensed 100 towels. At the end, 
our sensor reported 92 towels dispensed. As shown here, 
errors can accumulate, but nonetheless offers a reasonable 
approximation. Similar to our previous example, when the 
dispenser runs low, an order for more supplies could be 
automatically placed.  

Duration 
Similar to count, it is also possible to create second-order 
synthetic sensors that track the cumulative duration of an 
event, for example energy consumption or water usage 
(Figure 17). We performed two simple evaluations.  

First, using our microwave running first-order sensor (Table 
2N), we built a second-order “microwave usage” duration 
sensor. To test it, we ran the microwave 15 times with ran-
dom durations (between 2 and 60 seconds). At the end of 
each run, we compared our sensor’s estimated duration to 
the real value. Across 15 trials, our microwave usage sensor 
achieved a mean error of 0.5 seconds (SD=0.4 sec).  

As a second example, we used our faucet running first order 
sensor (Table 2E) to estimate water usage. To convert time 
into a volume of water, we used a calibration process simi-
lar to UpStream [32]. To test this sensor, we filled a large 
measuring cup with a random target volume of water (be-
tween 100-1000mL), and compared the true value to the 
classifier’s output. We repeated this procedure ten times, 
revealing a mean error of 75mL (SD=80mL). 

 
Figure 15. Data captured in an apartment over ~72 hours.   

Figure 14: Sensor in moving car. Here, high- and low-
sample-rate sensors offer complimentary readings useful in 
detecting complex events, e.g., when a window is opened. 

 
Figure 17. A first-order “faucet running” synthetic 

sensor (left) can be used to power a second-order 
“water volume” synthetic sensor (right). 

 
Figure 16. An example state machine for a  

second-order “microwave state” synthetic sensor. 



Nth-Order Synthetic Sensors 
Importantly, there is no reason to stop at second-order syn-
thetic sensors. Indeed, first-order and second-order synthetic 
sensors could feed into third-order synthetic sensors (and 
beyond), with each subsequent level encapsulating richer 
and richer semantics. For example, appliance-level second-
order sensors could feed into a kitchen-level third-order 
sensor, which could feed into a house-level sensor, and so 
on. A house-level synthetic sensor, ultimately drawing on 
scores of low-level sensors across many rooms, may even 
be able to classify complex facets like human activity. We 
hope to extend our system in the near future to study and 
explore such possibilities. 

CONCLUSION 
In this work, we introduced Synthetic Sensors, a sensing 
abstraction that unlocks the potential for versatile and user-
centered, general-purpose sensing. This allows everyday 
locations to become "smart environments" without invasive 
instrumentation. Guided by formative studies, we designed 
and built novel sensor tags, which served as a vehicle to 
explore this broad problem domain. Our real-world de-
ployments show that general-purpose sensing can be flexi-
ble and robust, able to power a wide range of applications. 
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