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ABSTRACT 
Homes, offices and many other environments will be 
increasingly saturated with connected, computational appli-
ances, forming the “Internet of Things” (IoT). At present, 
most of these devices rely on mechanical inputs, webpages, 
or smartphone apps for control. However, as IoT devices 
proliferate, these existing interaction methods will become 
increasingly cumbersome. Will future smart-home owners 
have to scroll though pages of apps to select and dim their 
lights? We propose an approach where users simply tap a 
smartphone to an appliance to discover and rapidly utilize 
contextual functionality. To achieve this, our prototype 
smartphone recognizes physical contact with uninstrument-
ed appliances, and summons appliance-specific interfaces. 
Our user study suggests high accuracy – 98.8% recognition 
accuracy among 17 appliances. Finally, to underscore the 
immediate feasibility and utility of our system, we built 
twelve example applications, including six fully functional 
end-to-end demonstrations. 
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INTRODUCTION 
We are surrounded by an ever-growing ecosystem of con-
nected and computationally-enhanced appliances, from 
smart thermostats and light bulbs, to coffee makers and re-
frigerators. The much-lauded “Internet of Things” (IoT) 
revolution predicts billions of such devices in use by the 
close of the decade [8]. Despite offering sophisticated func-
tionality, most IoT devices provide only rudimentary on-
device controls. This is because 1) it is expensive to include 
e.g., large touchscreen displays on low-cost, mass-market 
hardware, and 2) it is challenging to provide a full-featured 

user experience in a small form factor. Instead, most IoT 
appliances rely on users to launch special-purpose applica-
tions on their smartphones or browse to a specific webpage 
in the cloud or on their local area network. Quintessential 
examples include “smart” light bulbs (e.g., Philips Hue), 
media devices (e.g., Chromecast), Wi-Fi cameras (e.g., 
Dropcam) and internet routers.  

Clearly, this manual launching approach will not scale as 
the number of IoT devices grows. If we are to have scores 
of these devices in our future homes and offices—as many 
prognosticate—will we have to search through scores of 
applications to dim the lights in our living room or find 
something to watch on TV? What is needed is an instant 
and effortless way to automatically summon rich user inter-
face controls, as well as expose appliance-specific function-
ality within existing smartphone applications in a contextu-
ally relevant manner. 

In this paper, we explore two approaches to mitigate the 
aforementioned interaction bottleneck. The most straight-
forward option is to automatically launch manufacturers’ 
applications instantly upon contact with the associated ap-
pliance. For example, touching a smartphone to a thermo-
stat would launch the thermostat’s configuration app (Fig-
ure 4). In this case, the currently running app on the phone 
is swapped out for a new full screen app. Alternatively, the 
phone can expose what we call contextual charms—small 
widgets that allow the currently running smartphone appli-
cation to perform actions relevant to the touched appliance. 
For example, if reading a PDF, touching the phone to a 
printer will reveal an on-screen print button (Figure 1). 

This general vision of rapid and seamless interaction with 
connected appliances has been explored many times in the 
literature (e.g., [16, 23, 29]), and in this work we set out to 
practically achieve it. We created full-stack implementa-
tions for several example applications to show that the in-
teractions are realizable today. In cases where appliances 
have proprietary APIs, we can automatically launch the 
manufacturers’ app. For IoT devices with open APIs (fortu-
nately the trend), contextual charms can expose appliance-
specific functionality across the smartphone experience. 

To recognize appliances on-touch, we had to significantly 
extend the technical approach used in our prior work, EM-
Sense [17] – a smartwatch that detected electromagnetic 
emissions of grasped electrical and electromechanical ob-
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jects. As appliances are typically long-lived and rarely re-
placed, the adoption rate of “smart appliances” is expected 
to be slow – few, if any appliances in the average home to-
day are e.g. NFC-enabled. Thus, our technical approach re-
quires no modification or instrumentation of appliances, 
and can therefore work “out of the box” with already-
deployed devices. 

In summary, we contribute a novel system that allows in-
stant recognition of uninstrumented electronic appliances, 
which in turn allows us to expose contextual functionality 
via a simple tap-to-device interaction. We demonstrate high 
accuracy (98.8% recognition of 17 unmodified appliances 
in our user study), while running entirely on an augmented 
smartphone. In addition to conventional full-screen applica-
tions, we contribute contextual charms, a new cross-device 
interaction technique. Finally, in contrast to most prior 
work, we created truly functional implementations for many 
of our example demos using public IoT APIs. 

RELATED WORK 
We now briefly review two key categories of related work. 
First are systems that tackle the stubborn problem of inter-
device control, especially those that use a mobile device as 
the portal. Secondly, we describe research relating to our 
technical approach.  

Recognizing and Controlling Appliances 
Using mobile devices to control appliances has been ex-
plored many times in prior work. An early system by Hodes 
et al. [16] allowed users to control multiple pieces of lec-
ture hall equipment from a single wireless laptop, though 
users still had to manually select the target device from a 
graphical map. To alleviate this manual selection process, 
later work has considered a bevy of technical approaches to 
automatically select and recognize appliances from mobile 
devices, including RFID tags [27, 28, 31], fiducial tags 
[15], near-field communication (NFC) [9], laser pointers [2, 
26], handheld projectors [29] and personal area networks 
[25]. These systems allow users to select appliances by tap-
ping or pointing, but of course require appliances (or the 
environment) to be specially instrumented with tags or sen-
sors working in concert with custom emitters or sensors.  

For example, Reality Editor [15] is an augmented-reality 
smartphone app that allows users to rapidly link functionali-
ty and/or controls across devices (e.g., linking music vol-

ume to a knob). Objects are recognized via fiducial markers 
applied to their enclosures, and then device-specific func-
tionality is overlaid onto the object. Another compelling 
example is PICOntrol [29], which allows users to point a 
handheld projector at an object, providing both a graphical 
interface and command transmission through structured 
light. However, the object must be instrumented with a re-
ceiver photodiode and processor to decode commands. Be-
sides these device-to-appliance systems, there is an entire 
body of related work on device-to-device pairing [4]. 

Although many of the above systems facilitate recognition 
of appliances, few demonstrate actual control of real appli-
ances (e.g., using IoT APIs). Closer to our work are “full-
stack” systems (i.e., recognition up through appliance con-
trol) that do not require instrumentation of the appliance. 
GeeAir [24] allows users to select appliances by either 
pointing at them with a handheld control or by speaking the 
name of the appliance. Proximic-Aware Controls [18] used 
the orientation and position of a user’s phone to demon-
strate appliance interactions that were sensitive to physical 
context (e.g., distance to appliance) but not digital context 
(e.g., user’s active application or document). Mayer et al. 
[22] demonstrated a system that uses a smartphone’s cam-
era (combined with machine learning) to classify objects in 
the environment and overlay a suitable control interface. 
This system demonstrated classification between eight dif-
ferent objects, although no formal accuracy evaluation was 
presented. Finally, Snap-To-It [7] also used a smartphone 
camera in conjunction with a database of appliance images 
to automatically classify appliances and summon appropri-
ate interfaces. The result is much like what we propose, alt-
hough the technical approach is very different. 

Electromagnetic Emissions Sensing 
Most closely related to our technical approach are methods 
that perform recognition by sensing the electromagnetic 
emissions of electrical, electromechanical and electronic 
devices. Such radiation (and EM noise in general) is most 
often a byproduct of normal operation. Because of this, it is 
possible to sense appliance operation by sensing “electrical 
events” on power lines [1, 11, 13, 14]. 

It is also possible to use the “body as an antenna”, as pro-
posed in LightWave [10] and in Cohn et al. [6].  The latter 
system was able to recognize touch events on unin-

Figure 1. When a user is reading a document (a), they can tap the phone to a printer to bring up a “print”  
contextual charm (b). Pressing the charm spools the document to the printer (c), which prints it (d). 
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strumented walls and free-space gestures based on body 
coupling to noisy power lines. Superior gesture recognition 
accuracy was achieved in the follow up system, Humanten-
na [5]. uTouch [3] used EM coupling to detect touch ges-
tures on LCD displays. Similarly, EMI-Spy [34] used EM 
signatures to distinguish different LCD displays, enabling 
pointing and touching gestural input. These projects all 
used external laptop and data acquisition units, with sam-
pling rates ranging from 100 kHz to 1 MHz. 

Closer to the present work are methods that attempt to rec-
ognize handheld objects. For example, Maekawa et al. ex-
plored using magnetometers [20] and hand-worn coils [21] 
to detect grasped objects based on changes in the oscillating 
magnetic field. Wang et al. propose a similar magneto-
inductive system called MagnifiSense [30]. Lastly, EM-
Sense [17] used the body antenna effect to recognize elec-
trical devices on-touch or on-activation. The prototype is 
worn as a smartwatch, though it uses a software defined ra-
dio (SDR) connected to a smartphone over USB for sens-
ing, which then streams data to a laptop for classification. 
This prototype sampled at 1 MHz with an 8-bit resolution. 

In contrast to these systems, our sensing hardware is com-
pact, inexpensive, runs on a low-power embedded proces-
sor, and offers much higher sampling rate and resolution: 
4.36 MHz at 12-bit resolution. Furthermore, all processing 
and recognition takes place on the phone itself, making in-
tegration into consumer devices significantly more feasible. 

IMPLEMENTATION 
Our system consists of a smartphone instrumented with a 
compact EM sensor (Figure 2). All signal processing and 
classification is performed in real-time on the phone. Fur-
ther, all components are powered from the smartphone’s 
battery, making it a fully self-contained system. 

Prototype Smartphone 
Our smartphone prototype consists of an instrumented Mo-
to G XT1031, a mid-tier 2015 Android phone costing 
around $100 USD (Figure 2). This phone has a 1.2 GHz 
quad-core Snapdragon processor and 1 GB of RAM. It fea-
tures a removable plastic rear cover, which we inlaid with 
copper tape to serve as our antenna (Figure 2, center). The 

antenna was made as large as possible to maximize signal 
coupling and pick up low-frequency EM (0-2 MHz). In a 
commercial version, it may be possible to utilize an existing 
antenna or utilize the phone’s internal chassis (which is of-
ten made of magnesium or aluminum). 

EM Sensing 
The antenna is connected to a 50x inverting amplifier cir-
cuit compactly mounted on a custom PCB. This circuit am-
plifies the weak EM signals and adds a 1.6 V DC bias to 
move the signal to the 0-3.3 V range of our analog-to-
digital converter (ADC). The amplified signal is then sam-
pled by an ARM Cortex-M4 microcontroller running at 
96 MHz (MK20DX256VLH7).  

We sample the analog signal with 12-bit resolution at 
4.36 MHz. We achieve this high sampling rate by running 
both of the microcontroller’s ADCs on the same pin with 
interleaved triggers. We use the microcontroller’s direct 
memory access (DMA) unit to copy the ADC samples to 
main memory, reducing processor overhead. The total cost 
of the integrated sensing hardware shown in Figure 2, right 
(i.e., PCB, antenna, OpAmp, microcontroller and misc. pas-
sives) is under $10 in volume. 

Embedded Processing 
The first stage of data processing takes place on the micro-
controller itself. The processor continuously runs 1024-
sample discrete Fourier transforms (DFTs) on the input sig-
nal to extract the frequency spectra. We take the magnitude 
of the resulting complex-valued spectra to obtain amplitude 
spectra. Using an optimized, 16-bit fixed-point real-valued 
DFT, the processor performs ~1000 transforms per second. 

To improve the stability of the frequency domain data, we 
track the frequency-wise maximum over a running 40 ms 
window. We use a running maximum, rather than an aver-
age, in order to capture the transient signals typical of digi-
tal devices. Finally, the maximum amplitude spectra are re-
ported to the phone at 100 FPS using an On-The-Go (OTG) 
USB connection. This link is used both for transmitting data 
and for providing power to our sensing board. 

Recognition 
Our object recognition pipeline runs on the Android phone 
as a background service. The basic implementation largely 
follows the approach described in EM-Sense [17]. 

For each spectrum captured by the embedded processor, we 
extract a set of 699 features: the 512-element amplitude 
spectrum, the indices of the minimum and maximum spec-
trum elements, the root-mean-square (RMS) measurement, 
the mean and standard deviation of the spectrum, and pair-
wise band ratios. In particular, due to limited computational 
resources on the phone, we do not compute features over 
the 1st or 2nd derivatives, nor the 2nd-order FFT. 

Next, the features are fed to an ensemble of 153 binary lin-
ear-kernel support vector machine (SVM) classifiers, one 
for each possible pairing of the 18 output classes. The en-

Figure 2. Our sensing hardware attached to phone. Left: 
original prototype. Center: copper tape antenna inlaid on 
rear cover. Right: final prototype with integrated PCB. 
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semble’s output is determined through plurality voting. The 
entire classification process, including feature calculation, 
takes about 45 ms. We use the Weka machine learning 
toolkit [12], which we modified to run on Android, to per-
form classification on the phone. 

Finally, the classification is stabilized by outputting the 
most common classification amongst a window of the last 
20 ensemble outputs. This voting scheme ensures that spu-
rious or intermittent electrical signals do not result in errant 
classifications. In particular, without voting, “intermediate” 
signatures produced while a phone moves towards an object 
could result in incorrect classifications. This voting scheme 
introduces around 450 ms of latency into the pipeline. Once 
an object is recognized, the service displays a contextual 
charm on screen (if the foreground application supports it) 
or launches the appropriate full-screen control app. 

Contextual Charms 
Our contextual charms are small floating buttons that ap-
pear along the right edge of an application when the phone 
touches a supported device. These relate to both the context 
of the running smartphone application and the touched ap-
pliance. These buttons trigger specific phone-to-device ac-
tions, expressed as verb-object pairs: “print document”, 
“copy text”, “scan document”, “cast audio”, and so on. The 
charm application framework predefines several verbs and 
object types, and leaves room for future expansion. 

Our charm service runs as a background Android service 
alongside the classifier. Appliance and smart device drivers 
advertise the set of supported actions to the charm service 
(e.g. the HP printer driver registers the “print document” 
action on all supported printer models), which maintains a 
central registry. User-facing applications report the actions 
they can currently perform to the charm service.  

When an object’s EM signature is detected, the charm ser-
vice matches the object’s supported actions to available ap-
plication actions, then informs the application that new con-
textual actions are available. Within the application, select-
ing an action dispatches an “execute” command to the ser-
vice, which in turn dispatches the verb and associated ob-
ject data to the object’s appliance driver (e.g., a Media-
Router instance to implement casting of an audio file, or a 
backend printing driver to handle a document file). In this 
way, the charm service abstracts physical objects into re-
ceivers for application actions, allowing application devel-
opers to easily target arbitrary devices without needing to 
know specific device details. 

We envision that future smart appliance applications would 
register their device’s EM signature and a set of verbs with 
the charm system service upon installation, which would 
enable existing apps to immediately take advantage of ap-
pliances and devices in a user’s environment. This is analo-
gous to the current paradigm of applications registering 
Android “share” handlers to support system-wide sharing of 
content to e.g., social media. 

Figure 3. The appliances we identified in our lab that typi-
fied poor access to functionality, along with their “EM 
signatures”. Appliance names in blue signify the device of-
fers some type of connectivity for external control. Appli-
ances in grey offered no current connectivity, but it is easy 
to imagine future incarnations that do. We created demos 
for eleven appliances to illustrate the interactions our 
technique enables. For appliances with open or known 
APIs, we created fully functional demos (asterisks).  
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Duplicate Appliance Disambiguation 
As discussed in EM-Sense [17], all devices of the exact 
same model produce the similar EM signatures (though not 
identical, as discussed in [33]). Generally, this is not a sub-
stantial issue because people own a single instance of most 
appliances. For example, it is unlikely for a single house-
hold to have multiple refrigerators, let alone multiple of the 
same model. However, a single home (or office building, 
etc.) could have many thermostats or smart light bulbs of 
the same model. Although there are small EM differences 
that are characteristic of particular locations, we found 
these to be too unreliable for robust disambiguation. One 
possible solution is to rely on smartphones’ geo-location 
reporting to disambiguate which of several appliances the 
user is proximate to (if there are multiple in a single con-
text). Although indoor geo-location is currently coarse, 
much work is being done to improve accuracy [19]. 

EXAMPLE APPLIANCES 
We identified 17 appliances in our lab that typified poor 
access to rich functionality (Figure 3). Eleven of these de-
vices (names in blue) have some form of connectivity, 
though their “smartness” varies. For example, the Apple TV 
is connected to WiFi and can be controlled through a cloud 
portal or via iOS devices. On the other hand, our building’s 
HVAC system is wired and computer controlled, but not 
accessible for external control in the traditional IoT sense.  

We also include five appliances with no connectivity (Fig-
ure 3, names in grey), which serve as stand-ins for future 
“smart” versions of themselves. For example, we include a 
Keurig B200, a basic coffee brewing machine with no IoT 
functionally, as a proxy for future smart coffee makers. 
Although this lack of connectivity prevents us from build-
ing fully functional control implementations, it nonetheless 
allows us to explore how interactions with these devices 
might feel if there were to be made smart in the future. 

EXAMPLE FULL-SCREEN APPS 
We built three apps to illustrate controlling common infra-
structure hardware, and four apps to demonstrate control of 
common appliances. Please see Figure 4 and Video Figure 
for illustrations of all full screen applications. 

Infrastructure Hardware 
One of the most painful interactions on contemporary ther-
mostats is setting a heating/cooling schedule. In response, 
we built a multi-pane configuration application for our 
building’s thermostats, which instantly launches when a 
phone is tapped to any unit. Another awkward interaction is 
router control, which requires remembering and typing a 
numerical IP address (e.g. “192.168.1.1”) to access the 
web-based configuration panel. To simplify this process, 
we launch a router control application when the phone 
touches the wireless router; the IP address to the router 
could be inferred automatically from the gateway address 
on the device’s WiFi connection. Finally, some areas of our 
building require ID card access. Reviewing access control 
and history is tedious; we made an app that would offer 
easy access to both. 

Although these apps are meant to be illustrative, they are 
unfortunately non-functional as we currently do not have 
access to the control systems used to manage these devices. 

Household Appliances  
For our Frigidaire refrigerator, our app displays the temper-
atures set for the main and freezer compartments, as well as 
the status and mode of the icemaker. For our television set, 
we built a “remote control” app that allows users to control 
the TV’s input source and manage the built-in DVR func-
tionality. These two devices have no network connectivity 
at all (although networked smart fridges and TVs do exist), 
so the applications are simply illustrative. 

Figure 4. Example full-screen applications. Clockwise from left: lightbulb, refrigerator, television,  
thermostat, projector, door lock, and wireless router. Please also see Video Figure. 
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Finally, we also built two fully functional applications on 
top of device APIs. For the Philips Hue light bulb, users can 
touch the phone to any part of the metal standing lamp to 
trigger the full screen control app. The app connects to the 
Philips Hue wireless bridge device through UPnP autodis-
covery, and then issues commands using the Hue’s REST 
API to control the color and brightness of the lightbulb in 
response to user input. 

For the Mitsubishi projector, users can touch the phone to 
the side of the device to launch a fully functional configura-
tion app. The app connects to the projector over the 
Crestron device control protocol to obtain the device status 
and issue control commands. Our app can change the input 
source, power the projector on and off, and adjust the 
brightness and contrast of the image. 

EXAMPLE CONTEXTUAL CHARMS 
We also created five contextual charms to demonstrate tar-
geted interactions with devices tailored for specific applica-
tions. Four of these charms are fully functional, illustrating 
the immediate feasibility of this technique. 

In our prototype document reader, users can tap their phone 
to a computer monitor, bringing up a “send” charm (Figure 
5). Pressing the charm uploads the current document to the 
computer’s desktop. The charm establishes a connection 
with an authenticated custom file transfer service on the lo-
cal network, with the user confirming the file transfer on 
the computer. The file transfer dialog could appear on any 

computer the user owns, and this action of confirming the 
transfer ensures the file is sent to the right device. 

Users can also select a segment of text on the phone to re-
veal a “copy” charm when pressed to a computer monitor 
(Figure 6). If activated, the text is copied to the computer’s 
clipboard. This uses the same file transfer service, but in-
stead copies the sent data to the clipboard using the Mac OS 
X pbcopy utility. This can be used not only for text, but also 
media, such as PDFs and images.  

Tapping the phone to a TV reveals a “cast” charm (Figure 
7), which can be used to show the current document on the 
larger screen. This charm was only illustrative, as we did 
not have a suitable networked TV for automatic casting. 

When the phone is tapped to a printer, it brings up a “print” 
charm (Figure 1), which spools the current document to the 
printer. The document is rendered using the Android print-
ing API, and sent to our institution’s networked print spool-
er over WiFi. The printer can be identified through its EM 
signature (unique per model) and geo-location. 

Finally, we also built a music player app. When the phone 
is touched to a Chromecast Audio device, a “cast” charm 
appears on-screen (Figure 8). Tapping this charm automati-
cally transfers the audio stream to the Chromecast. This is 
implemented using the Android Media-Router remote 
streaming API, and assumes that only the phone and 
Chromecast Audio have been previously paired. 

Figure 6. “Copy Text” contextual charm. With text select-
ed, a second “copy” charm appears (a). Tapping that 
charm copies the text to the tapped computer’s clipboard, 
which the user then pastes into the document (b). 

Figure 7. “Cast Video” contextual charm. With a docu-
ment open, the user touches the phone to a TV to reveal a 
“cast” charm (a). Tapping this charm casts this document 
in full resolution to the TV (b). 

Figure 5. “Send Document” contextual charm. With a document open (a), the user taps the phone to the screen 
to get a “send” charm (b). Activating the charm transmits the document to the computer (c, d). 
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EVALUATION 
Prior to the study, we trained our smartphone prototype 
(Figure 2, left) to recognize appliances. Specifically, we 
held the smartphone to a device’s surface and collected 500 
EM signature instances over a five second period. This pro-
cedure was repeated for each of our 17 example appliances 
in a random order. A second round of data was collected on 
a different day (to mitigate potential over-fitting to envi-
ronmental conditions). We also collected six rounds (3000 
instances) of “no appliance”, i.e., ambient background EM 
noise. We then used this data (20,000 instances in total) to 
train and deploy an object-recognition classifier to the 
smartphone. 

We recruited 10 participants (five female, mean age 28.6, 
mean BMI=23.2) for our user study, which took approxi-
mately 30 minutes to complete and paid $10. Our 17 exam-
ple appliances were located in five zones: common area, 
conference room, kitchen, office, and living room. Partici-
pants visited these zones in a random order. Within each 
zone, users touched the smartphone to one appliance at a 
time. Each appliance was requested three times, and the or-
der of requests was randomized. In total, this yielded 510 
trials (10 participants x 17 appliances x 3 repeats). 

Of note, the smartphone performed live, on-device classifi-
cation (i.e., no post hoc feature engineering, kernel parame-
ter optimization, etc.). Furthermore, there was no per-user 
calibration or training – a single, pre-trained classifier was 
used throughout the experiment and across all participants. 
Although still a lab study, this practice more closely emu-
lates real world deployment (where a classifier might be 
deployed to many devices with an over-the-air update). In 
addition to using a classifier trained more than a week prior, 
we also ran our user study over a three-day period, demon-
strating the temporal stability of our system.  

RESULTS 
Across 10 users and 17 objects, our system achieved an 
overall accuracy of 98.8% (SD=1.7%). 14 objects achieved 
100% accuracy. The three non-perfect devices were our 
Wall-Mounted AV panel (Object F) and Thermostat (P), 

which were 96% accurate, and our Standing Lamp with 
Phillips Hue Bulb (L) at 86% accuracy. We suspect the 
lamp recognition errors were due to us allowing participants 
to touch anywhere on the metal lamp stand, as opposed to 
the bulb itself. Nonetheless, our system was fairly robust 
overall, and we found no relationship on system accuracy 
across users, location or time. 

LIMITATIONS 
We initially set out to produce full-stack implementations 
for all of the network-connected devices on our list. How-
ever, we were stymied by the lack of public APIs on several 
of them. Furthermore, even when APIs were available, 
some were vendor-locked (e.g., the Apple TV casting APIs 
were only open to Apple devices). In order for the future 
Internet of Things to have true impact, open APIs are a 
strong requirement. Until then, our system will be limited 
by the inability to talk to all smart devices. 

It is also important to note that our approach cannot detect 
objects when they are truly and totally powered off. How-
ever, many objects have a detectable “low-power” or 
“sleep” mode when not active (see e.g., dishwasher EM 
signal in Video Figure), particularly if they have an always-
on Internet connection. More generally, for robust detection 
in all circumstances, our system would have to be trained 
with a representative sample of possible device states. 

In large, shared environments, our system cannot accurately 
distinguish between multiple instances of a particular object 
(e.g. multiple thermostats). Fundamentally, distinguishing 
objects that are outwardly identical is very difficult, and in 
this work we make our best effort via techniques such as 
network broadcasting (e.g. UPnP, broadcast-and-confirm) 
and geolocation. However, there is some promise in using 
minute differences in devices’ EM signatures to distinguish 
even apparently identical devices [33], which is an area for 
future exploration. 

Finally, as with any EM sensing approach, our system is 
susceptible to external interference from powerline noise. 
Such noise can confuse the classifier and decrease accura-
cy. This is a hard problem to solve, and was previously 
acknowledged in EM-Sense. Future designs should imple-
ment strong noise rejection to reject common sources of 
powerline noise (e.g. high-current devices such as vacuum 
cleaners), but further work remains to be done. 

CONCLUSION  
We have presented a novel system that enables users to 
simply tap their smartphone to an appliance to interact with 
it. To achieve this, we developed a novel hardware sensing 
configuration and combined it with efficient and accurate 
real-time classification to create a self-contained prototype. 
Through a user study, we quantified the characteristics of 
our system. Finally, we demonstrated a number of applica-
tions enabled by our technique, including several full-stack 
implementations, thus providing a preview of what our fu-
ture “smart” world might feel like in the near future. 

Figure 8. “Cast Audio” contextual charm. While the user 
is playing an audio file (a), they can tap the phone to a 
Chromecast Audio device to see a “cast” charm (b). Tap-
ping on that charm transfers the current audio stream to 
the Cast device’ connected to the room’s speakers. 
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