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ABSTRACT 

Acoustic activity recognition has emerged as a foundational 

element for imbuing devices with context-driven capabilities, 

enabling richer, more assistive, and more accommodating 

computational experiences. Traditional approaches rely either 

on custom models trained in situ, or general models pre-

trained on preexisting data, with each approach having accu-

racy and user burden implications. We present Listen Learner, 

a technique for activity recognition that gradually learns 

events specific to a deployed environment while minimizing 

user burden. Specifically, we built an end-to-end system for 

self-supervised learning of events labelled through one-shot 

interaction. We describe and quantify system performance 1) 

on preexisting audio datasets, 2) on real-world datasets we col-

lected, and 3) through user studies which uncovered system 

behaviors suitable for this new type of interaction. Our results 

show that our system can accurately and automatically learn 

acoustic events across environments (e.g., 97% precision, 87% 

recall), while adhering to users’ preferences for non-intrusive 

interactive behavior. 

Author Keywords 
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CCS Concepts 

Human-centered computing~ Ubiquitous and mobile compu-

ting systems and tools. 

INTRODUCTION 

Smart devices are becoming more prevalent in peoples’ living 

environments, accelerating the vision of ubiquitous computing 

and the Internet-of-Things (IoT). However, these devices still 

lack contextual sensing capabilities – they have minimal un-

derstanding of what is happening around them, therefore lim-

iting their potential to enable truly assistive computational ex-

periences. In response, acoustic activity recognition has 

emerged as a practical modality for contextual sensing, due to 

the prevalence of microphones, their robustness to occlusion, 

as well as the availability of hardware that can process high-

fidelity acoustic information on-device. 

A key challenge for acoustic activity recognition is building 

classifiers that can recognize highly localized events with min-

imal user intervention or in situ training. To train such classi-

fiers, two predominant approaches have been proposed, with 

particular accuracy and user burden implications (Figure 1). 

First is to train a system manually, after it is deployed, most 

often by demonstrating different activities and having a user 

provide class labels (Figure 1, top-right). Because data is col-

lected in-situ, accuracy tends to be quite high. However, the 

burden to the user is also high. The other approach is to pro-

vide users with pre-trained general classifiers that work “out 

of the box” (Figure 1, bottom-left). This technique is achieved 

by training a classifier on a large, preexisting corpus of acous-

tic data.  However, because the classifier has no data for a 

user’s specific environment, it tends to be less accurate, but the 

burden to the user is very low. 

We propose and evaluate a balanced approach that seeks to 

provide high classification accuracy, while minimizing user 

burden. Our approach (Figure 2) requires no up-front data, and 

instead, learns acoustic events over time, requiring no manual 

demonstration. Our system learns events in situ, and thus it is 

highly tuned to its local environment and events of interest, 

offering superior accuracy compared to pre-trained classifiers. 

LISTEN LEARNER 

In this paper, we characterize an operational space for person-

alized Human Activity Recognition (HAR [14]) systems using 

two factors that significantly impact practicality – classifica-

tion accuracy and user burden. We contribute an approach that 

optimizes this tradeoff with an interactive, low-burden 
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Figure 1. A design landscape of different approaches for activ-

ity recognition, plotted by classification accuracy (Y-axis) and 

user burden (X-axis). Ideal approaches (top-left) offer high ac-

curacies with minimal user burden. 
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approach, along with an end-to-end hardware and software im-

plementation supporting several virtual assistant-driven inter-

action techniques. Finally, we evaluate both quantitative (i.e., 

benchmarks and comparisons of our system’s performance in 

a variety of contexts) and qualitative (i.e., users’ preferences 

for interactive ML systems) aspects of our system. 

Example Interaction 

To illustrate the utility of Listen Learner, we describe the fol-

lowing vignette: 

Setup. Lisa deploys a smart speaker, equipped with Listen 

Learner, on her kitchen countertop. The system starts with no 

data or knowledge about its environment. As sounds in Lisa's 

kitchen occur, the device clusters similar acoustic events. No 

raw audio is saved to the device or to the cloud. 

One-Shot Labeling. Eventually, the system becomes confident 

that an emerging cluster of data is a unique sound, at which 

point, it prompts Lisa for a label the next time it occurs. The 

system asks: “what sound was that?”, and Lisa responds with: 

“that is my faucet.” As time goes on, the system can continue 

to intelligently prompt Lisa for labels, thus slowly building up 

a library of recognized events. 

Verification and Refinement. Instead of asking an open-ended 

question, the system can make an initial guess (using a general 

pretrained model). The system might ask: “was that a 

blender?”, in which Lisa responds: “no, that was my coffee 

machine.” In other cases (e.g., ambiguous cluster boundaries), 

the system can ask refinement questions such as: “was that a 

faucet or a microwave?”, in which Lisa responds: “it’s a mi-

crowave.” The library of sounds that the system builds over 

time can then be used to power new assistive and smart appli-

cations.  

Unlike traditional supervised learning methods that require 

numerous user-labelled examples in the training phase, our ap-

proach inverts the annotation and training process. Our system 

learns an ensemble of classifiers without any user intervention, 

and only later is the user queried in situ to provide a label for 

the model the next time it is triggered.  

RELATED WORK 

We situate our system in the literature of contextual sensing 

for activity recognition and machine learning methods for real-

world activity recognition. 

Audio Event Classification 

Optical sensors, such as RGB cameras [23][32][35][36] or 

depth sensors [38][82] are popular approaches for human ac-

tivity recognition [14], but these systems are susceptible to oc-

clusion. In response, audio-based sensing has emerged as a 

complementary modality, deployed in both localized 

[44][45][68][80] and wide-area applications [34][62][69]. Ap-

proaches for distilling acoustic information include computing 

statistical features on time-domain [70], frequency [46][70] or 

wavelet representations [70][72]. More recently, deep-learn-

ing architectures have been used to model the inherent non-

linearities in acoustic data. Here, audio signals are treated as 

one-dimensional signals [8][51], or two-dimensional spectro-

grams [24] that serve as input to convolutional neural net-

works (CNNs), previously used for image classification 

[24][34]. Listen Learner uses the “bottleneck” embedding rep-

resentation of a CNN (similar to those previously used for au-

dio event discovery and activity recognition [28][41]), but 

fine-tuned on a library of sound effects [34]. 

Generalizable Machine Learning Methods for HAR 

A major challenge of HAR is training highly robust machine 

learning models (i.e., accurate classification, sparse false pos-

itives). One approach is to employ semi-supervised learning 

techniques such as Positive Unlabeled Learning (PUL) [20] to 

learn from a small number of positively labelled samples. In 

the context of HAR, Nguyen et al. propose using a specific 

form of PUL, called mPUL to decrease the amount of training 

data and reduce false-positives by assuming “open-world con-

ditions” [49]. Others have focused on active learning to intel-

ligently scaffold the training process [26][43][66]. A related 

strategy is to model user activity using a set of semantic attrib-

utes—allowing activities to be defined in a more generalizable 

way [3][50][75]. 

 
Figure 2. Listen Learner overview. A smart device is deployed in a user’s environment (A). Over time, using its built-in micro-

phone, it clusters the various sounds it hears (B and D). When the system becomes confident that a set of sounds it has heard is a 

singular activity, it prompts the user for a label (C). That sound cluster is then labeled (F), allowing for future recognition of that 

sound. Over time, the system builds up many clusters, prompting the user occasionally (G and H), allowing for a wide range of 

events and activities to be recognized at high accuracy. 
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Relevant Machine Learning Approaches 

One of the goals of our system is to require limited training 

labels from users. Relevant approaches include co-training  

[13], a semi-supervised learning method [16] for leveraging a 

small number of examples and a large unlabeled set to create 

a model with better classification performance.  Likewise, 

one-shot and zero-shot learning approaches allow models to 

recognize previously unseen classes with very few (or zero) 

labelled training instances [79]. Our system most closely re-

sembles incremental learning, a learning approach that ac-

commodates new data to continuously improve and extend a 

model’s knowledge without fully retraining the model [56]. 

This approach to learning has been explored in many domains, 

including computer vision [40][57], audio event recognition 

[19], natural language processing [15][81], and activity recog-

nition [47][61]. 

SoundSense [44] is most similar to Listen Learner, in that it 

also provides a platform for audio event discovery. Sound-

Sense was implemented on a mobile platform and starts with 

a pre-existing set of classes that it uses to bootstrap recognizers 

for new classes. SoundSense uses a Bayesian classifier and 

Hidden Markov Model (HMM) to learn new audio events, 

which results in assumptions about the distribution of audio 

events (e.g., can be modeled by a Gaussian). The model also 

requires a number of parameters to be set that can be difficult 

without a priori knowledge. In our evaluation, we show that 

Listen Learner has superior performance to a baseline Gauss-

ian Mixture Model (GMM), another type of model that as-

sumes a Gaussian distribution of data. 

IMPLEMENTATION  
We implemented Listen Learner as an end-to-end system that 

automatically generates acoustic event classifiers over time. 

Here, we describe our sensing hardware, data processing pipe-

line, and self-supervised learning algorithm. 

Hardware 

Our prototype consists of both a deployed sensor device (anal-

ogous to a smart speaker; Figure 3), and a processing server 

(on which the self-supervised learning algorithm is executed). 

Specifically, we use a Raspberry Pi 3 Model B+ with a 4-mi-

crophone array (seeedstudio.io), which we use to compute 

acoustic direction-of-arrival (part of our feature set). We also 

connect a speaker using its 3.5 mm audio jack. We set the mi-

crophone sampling rate to 16 kHz 16-bit integer linear PCM. 

The device is configured to connect to WiFi and upload fea-

turized audio data to our data processing server (12-core Mac 

Pro, 64GB RAM).   

Cluster-Classify Algorithm 

We designed a self-supervised algorithm that identifies salient 

acoustic events, generating corresponding classifiers for activ-

ity recognition, while minimizing user effort (Figure 4). More 

specifically, the algorithm learns an ensemble model by itera-

tively clustering unknown samples, and then training classifi-

ers on the resulting cluster assignments. This allows for a 

“one-shot” interaction with the user to label portions of the en-

semble model when they are activated. 

Segmentation 

First, we segment audio events using an adaptive threshold 

that triggers when the microphone input level (dBFS) is 1.5 

standard deviations higher than the mean of the past minute. 

We employ hysteresis techniques (i.e., for debouncing) to fur-

ther smooth our thresholding scheme. While many environ-

ments have persistent and characteristic background sounds 

(e.g., HVAC), we ignore them (along with silence) for com-

putational efficiency. Note that incoming samples were dis-

carded if they were too similar to ambient noise, but silence 

within a segmented window is not removed. 

Featurization 

Next, we convert audio segments into feature embeddings ex-

tracted from the last hidden layer of a VGG-ish [67] deep CNN 

audio model [24]. This model was initially trained on the 

YouTube-8M dataset, and further augmented with a library of 

professional sound effects [34]. We construct 96×64 log-mel 

spectrogram patches as input to the CNN using a non-overlap-

ping 960 ms sliding window over audio input. For example, 

an audio clip of a faucet running for 9.6 seconds would pro-

duce 10 featurized embeddings. In our prototype hardware, 

this computation takes an extra 1 second per 960 ms of audio. 

While this causes some input frames to be dropped, we do not 

find this limiting (i.e., due to the sustained nature of most hu-

man activities). The choice of using deep neural network em-

beddings, which can be seen as learned low-dimensional rep-

resentations of input data [12], is consistent with the manifold 

assumption (i.e., that high-dimensional data roughly lie on a 

low-dimensional manifold [16]). By performing clustering 

and classification on this low-dimensional learned representa-

tion, our system is able to more easily discover and recognize 

novel sound classes. 

Clustering 

Next, we infer the location of class boundaries from our low-

dimensional learned representations using unsupervised clus-

tering methods. Our approach is supported by the cluster as-

sumption, which states that if points are in the same cluster, 

they are likely to belong to the same class and that the decision 

boundary between classes should lie in a low-density region 

[16].  For our implementation, we use a hierarchical agglom-

erative clustering (HAC) algorithm known as Ward’s method 

[77]. Using the linkage matrix produced by the algorithm, we 

take all clusters merged with size 𝑛𝑚𝑖𝑛 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 as candi-

date clusters representing classes of audio events. Note that 

 
Figure 3. For data collection and experiments, we used a fleet 

of 16 Raspberry Pi 3 B+ with 4-mic microphone shields. 
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these candidate clusters may overlap with one another, but we 

evaluate all possible groupings of data to find the best repre-

sentation of classes.  

Classification 

While our clustering algorithm separates data into clusters by 

minimizing the total within-cluster variance, we also seek to 

evaluate clusters based on their classifiability. Following the 

clustering stage, we use a unsupervised one-class support vec-

tor machine (SVM) algorithm that learns decision boundaries 

for novelty detection [65]. For each candidate cluster, a one-

class SVM is trained on a cluster’s data points, and its F1 score 

is computed with all samples in the data pool. 

Model Construction 

Traditional clustering algorithms seek to describe input data 

by providing a cluster assignment, but this alone cannot be 

used to discriminate unseen samples. Thus, to facilitate our 

system’s inference capability, we construct an ensemble 

model using the one-class SVMs generated from the previous 

step. We adopt an iterative procedure for building our ensem-

ble model by selecting the first classifier with an F1 score ex-

ceeding the threshold, 𝜃𝑐𝑙𝑓  and adding it to the ensemble. 

When a classifier is added, we run it on the data pool and mark 

samples that are recognized. We then restart the cluster-clas-

sify loop until either 1) all samples in the pool are marked or 

2) a loop does not produce any more classifiers. 

Incremental Learning 

Our system is designed for longitudinal deployment, where 

more data is revealed to our system over time. As described 

earlier, the data pool grows as more audio is captured from the 

environment. When a new batch of data is added, we re-run 

our algorithm. 

Of course, there are computational and data storage limits. As 

a practical compromise, in our current implementation, we 

only store audio samples within a fixed time window (e.g., 

one-week’s worth of data). When new data is received beyond 

this threshold, the oldest samples are discarded. Other methods 

are also possible, depending on the hardware or desired behav-

ior (e.g., random subsampling of the data pool, or a replace-

ment scheme that discards data points based on classification 

accuracy rather than age). 

Data Management 

For research purposes, we chose to aggregate data collected 

from the sensing devices on a central server, which also per-

mitted us to process data more efficiently. In our study deploy-

ment, we only transmitted and stored featurized data, which is 

computed on the sensing board. The algorithm has access to a 

data pool, which contains featurized data that is not yet recog-

nized by our system. Data is added to the pool in batches (e.g., 

after the end of each day, or after 𝑛 samples). 

Audio Directionality 

Our sensing hardware includes a microphone array, allowing 

additional directionality information, which serves as a com-

plementary sensing modality. We chose to represent this using 

the x and y components of a normalized unit vector. During 

the clustering step, we use a late-fusion approach [9] that per-

forms clustering on two sources of data: 1) clusters based on 

directional information, and 2) clusters from audio embed-

dings. Clusters from both sources are provided to the classify 

step, with directional information considered first. During the 

classification stage, we allow the classifier to learn the relative 

weights of each modality by using an early-fusion approach 

(i.e., concatenating audio embeddings with directionality vec-

tors). 

User Interaction 

Once our system has generated classifiers for the model, the 

last step is to seek labels from users. Numerous approaches are 

possible, depending on the platform. Examples include voice-

based conversation agents [53][59][60], text response for 

screen-based hardware, and push notifications for mobile de-

vices. As a proof-of-concept prototype, we programmed our 

device to act like a smart speaker that queries the user using a 

simple speech interface. When an unlabeled class in the model 

is activated, the system asks the user, “what was that sound?” 

immediately after the sound event. We use a commercial voice 

transcription web service to recover the utterance text and ex-

tract the last noun chunk using an off-the-shelf NLP package 

[25]. If no noun chunks are detected, the entire response is 

used as a label.  

Privacy Preservation 

While our acoustic approach to activity recognition affords 

benefits such as improved classification accuracy and incre-

mental learning capabilities, the capture and transmission of 

audio data, especially spoken content, should raise privacy 

concerns. In an ideal implementation, all data would be re-

tained on the sensing device (though significant compute 

would be required for local training). Alternatively, compute 

could occur in the cloud with user-anonymized labels of model 

classes stored locally. 

HYPERPARAMETER TUNING 

We adjust our system’s behavior using the following parame-

ters: 𝜃𝑐𝑙𝑓 (classifier acceptance threshold), 𝑛𝑚𝑖𝑛 (min. cluster 

 
Figure 4. Listen Learner architecture and data flow. 
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size), 𝑛𝑚𝑎𝑥 (max. cluster size), and 𝜈 (number of support vec-

tors [64] of the one-class SVM). We conducted a series of pre-

liminary studies to inform the design of our algorithm and for 

hyperparameter tuning. 

Tuning Metrics 

Traditional clustering metrics include cluster purity [28], con-

ditional entropy [58], and other information-based approaches 

[73]. By running our generated model on a dataset, we can cre-

ate cluster assignments conditioned on these metrics. We use 

an objective function that takes into account the classification 

performance on unseen data, based on the following equation: 

𝜇 = 𝛼 ∙ F1𝑎𝑐𝑐𝑒𝑝𝑡 + (1 − 𝛼) ∙ 𝑟𝑎𝑐𝑐𝑒𝑝𝑡 

where 𝛼 represents the weighted average between the F1 score 

of accepted samples and the models’ acceptance rate. As we 

later describe,  can be adjusted to influence characteristic 

system behaviors (e.g., relaxed or conservative). 

Tuning Setup 

We tuned our system’s hyperparameters empirically, using 

two datasets for audio events and environmental sounds. Spe-

cifically, we use the ESC-10 subset of the ESC-50 dataset (10 

classes, 400 clips) [55] and UrbanSound8K (10 classes, 8732 

clips) [63].  These datasets contain ground-truth labels, 

thereby allowing us to find optimal parameters for our system. 

Further, we randomly subsample 3000 0.96-second windows 

from UrbanSound8K to simulate a real-world usage period (10 

event classes × 10 events per day × 30 days). Each dataset is 

shuffled and split into a tuning set (25%), used for hyperpa-

rameter tuning, and an evaluation set (75%), used later for our 

formal evaluation. We further divide our tuning set into three 

partitions for training (60%), holdout (20%), and testing (20%).  

Tuning Procedure 

The algorithm is initially executed using hyperparameters de-

rived from the training set. The extracted unlabeled classifiers 

are labelled by randomly selecting samples from the holdout 

set (without replacement) and taking the ground truth label of 

the first instance that was recognized. This simulates our sys-

tem’s labelling strategy of soliciting labels from the user the 

first time it is triggered. The ensemble model is then evaluated 

on the test set to calculate F1accept and raccept. This process is 

repeated 10 times (per hyperparameter combination), and the 

mean is used by the objective function. Finally, for our hy-

perparameter search, we use a parameter-free black-box opti-

mizer [33] to maximize the objective function, and we run the 

optimizer for 50 iterations. 

Algorithm Behavior & Results 

We now describe three example system behaviors derived 

from characteristic hyperparameters: 

Relaxed (low ) - This setting aims to cluster and classify 

as many sound events as possible, even when confidence 

is low. Although more sounds are recognized, accuracy 

is generally lower. 

Balanced (medium ) – This setting produces an inter-

mediate behavior that seeks to accept a moderate number 

of samples with usable levels of accuracy.  

Conservative (high ) – This setting accepts new classes 

only when confidence is extremely high. This results in 

more events being unclustered (and thus ignored), but 

recognized sounds are more accurate. 

These settings were acquired by manually fine-tuning the out-

put of the black-box hyperparameter optimizer. For the ESC-

10 dataset, we use  values of 0.4, 0.75, and 0.9 for Relaxed, 

Balanced, and Conservative, respectively. For the Ur-

banSound8K dataset, we use  values of 0.6, 0.8, and 0.9 for 

Relaxed, Balanced, and Conservative, respectively. The in-

verse relationship between F1 accuracy and acceptance rate is 

shown in Table 1.  

In-The-Wild Data Collection 

Setup. In addition to our preliminary experiments for hyperpa-

rameter tuning, we also performed a 10 day-long in-the-wild 

data collection. Because the primary motivation of Listen 

Learner is to support low-burden personalized acoustic activ-

ity recognition in situ, we wanted run our system under real-

world conditions to better characterize sound events present in 

entirely uncontrolled environments as a compliment to using 

datasets like ESC-50 and UrbanSound8K.  

Procedure. Our in-the-wild investigation was conducted 

across a period of one and a half weeks at seven locations 

(seven rooms, five buildings). Specifically, they include a mix 

of high-activity and low-activity environments: office, base-

ment, kitchen 1, bathroom 1, living room, kitchen 2, and bath-

room 2. Recording consent was obtained from both the owners 

of the spaces and any visitors.  

Results. For each behavior setting, we take the mean value be-

tween the ESC-10 and UrbanSound8K hyperparameter value 

for use on our in-the-wild collected dataset. An average of 41.9 

Table 1. F1 scores and acceptance rates on the ESC-10 (ESC) 

and UrbanSound8K (U8K) datasets, based on different hy-

perparameter behaviors. 
Behavior F1 Score Accept. Rate 

 ESC U8K ESC U8K 

Relaxed 0.40 0.48 0.50 0.39 

Balanced 0.97 0.79 0.14 0.25 

Conservative 1.00 1.00 0.10 0.13 

 

Table 2.  Number of discovered classes by room and their hy-

perparameter profiles. Living room had the most varied acous-

tic profile, primarily due to edge-case appliances e.g., TV. 
Location Relaxed Balanced Conservative 

Office 38 26 7 

Basement 10 9 4 

Kitchen 1 28 19 7 

Bathroom 1 6 13 8 

Living Room 176 93 28 

Kitchen 2 13 24 7 

Bathroom 2 22 12 8 
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(SD=55.7), 27.9 (SD=27.3), 9.9 (SD=7.5) classes were dis-

covered by the system using the Relaxed, Balanced, and Con-

servative settings, respectively. It is possible that multiple clas-

ses are generated by the same object and would be given the 

same label by the user (e.g., microwave running and micro-

wave door closing both being labeled as “microwave”). We 

report room-specific results in Table 2, which shows that our 

system can effectively discover classes in real-world environ-

ments, and hyperparameters tuned using our objective func-

tion produces consistent behaviors across datasets. 

EVALUATION 

Our in-the-wild investigation was useful for characterizing 

key aspects of our system, but without reliable ground truth, it 

was impossible to quantify its classification and discovery per-

formance. In response, we conducted a secondary evaluation 

wherein we collected acoustic data along with ground truth la-

bels. We quantified system performance over time by catego-

rizing model output into three possibilities: 1) correct (recog-

nized sound belongs to a cluster and is classified correctly), 2) 

incorrect (recognized sound belongs to a cluster but is mis-

classified), and 3) ignored (sound event is ignored by the sys-

tem). 

Datasets 

We conducted our evaluation with three datasets of varying 

sizes and class counts.  

Preexisting Datasets. The first two datasets (ESC-10 and Ur-

banSound8K) were previously used for hyperparameter tuning. 

In this evaluation, we utilized unused data we specifically held 

out for this evaluation. However, we note these downloaded 

datasets were recorded with different microphones in different 

environments, and thus less representative of the type of data 

we envision for our system.  

Environment-Deployed Dataset. In addition to the two exist-

ing datasets, we also collected real-world data from six envi-

ronments over a one-week period using our sensing hardware. 

Following previous audio-based HAR work [34], [41], we se-

lected the following environments: an apartment bathroom, an 

apartment kitchen, a detached house bathroom, a woodwork-

ing shop, an electronics workshop, and a commercial office. 

For each environment, we selected 5-7 events of interest and 

recorded five 20-second clips of each event per day. Data col-

lection was performed in a controlled setting (i.e., minimal 

competing events) and in the absence of any bystanders, to 

preserve their privacy. Mobile objects or actions that could be 

performed in different locations (e.g., speech, electric tooth-

brush) had their locations randomized in the room across re-

cording sessions. The position and orientation of the recording 

device was kept constant across sessions. We repeated this 

data collection process for one week. In total, we collected 

1295 audio clips (432 minutes), resulting in 26,970 featurized 

samples. 

Procedure 

We followed an evaluation procedure similar to our hyperpa-

rameter tuning experiments. Specifically, we divided each da-

taset (two preexisting, one real-world) into training (60%), 

holdout (20%), and test sets (20%). We simulate the passage 

of time by gradually expanding the portion of the training set 

used by our system (i.e., using the next 100 samples for the 

offline datasets, or using timestamps for the real-world da-

taset). We further analyzed our system’s accuracy on the por-

tion of accepted samples, breaking it down by class and com-

paring against two baseline models. Specifically, we measure 

the % of Correctly classified instances, % of Incorrectly clas-

sified instances, and % of Ignored instances (e.g., low confi-

dence). It is possible to interpret our results using traditional 

metrics such as Precision (% Correct / % Accepted) and Recall 

(% Correct). 

RESULTS 

In this section, we discuss evaluation results for key metrics, 

including accuracy, number of events recognized, the effect of 

directional data, performance across classes, and comparisons 

against baseline models. 

Accuracy & Accept Rate 
Figures 5 depicts our system’s accuracy over time. On the real-

world dataset, our system achieved F1 scores of 0.59, 0.84, 

and 0.88 (for the Relaxed, Balanced, and Conservative settings, 

respectively) between accepted samples. Specific to the real-

world dataset, the apartment kitchen environment achieved the 

highest accuracy after the one-week period (F1accept=1.0). Both 

the Balanced and Conservative settings achieved F1accept scores 

of 1.0, with accept rates of 0.39 and 0.16, respectively. The 

lowest accuracy on the real-world dataset occurred in the 

apartment bathroom using the Relaxed setting (F1accept=0.42 

and raccept=0.73). 

The accept rates for our various hyperparameters remained 

consistent with their tuned behaviors. On the real-world da-

taset, our system reached accept rates of 0.66, 0.38, and 0.20 

(for the Relaxed, Balanced, and Conservative settings, respec-

tively). The Relaxed setting run on the apartment kitchen en-

vironment achieved a 0.85 accept rate with a F1 score of 0.64. 

On the other hand, the apartment bathroom environment had 

the lowest accept rate on the Conservative setting (F1accept=1.0, 

raccept=0.03). At the dataset level, the highest accept rate was 

reached by the Relaxed setting on UrbanSound8K (0.67), 

while the Conservative setting for the same dataset had the 

lowest rate (0.16). 

We observed key trends with our system’s performance over 

time. In general, the addition of more audio samples led to 

higher accuracy, due to the ability to form larger clusters and 

thus train more robust classifiers. Occasionally, novel outlier 

events caused accuracy to temporarily decrease (e.g., 4th day 

of ESC-10, 13th day of UrbanSound8K), but the system learns 

and accommodates this quickly. In all tested datasets, there is 

a convergence point at which processing more data does not 

lead to significant improvements in either accuracy or accept 

rate.  
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Table 3. Baseline comparison across 10 randomized cluster as-

signments. We show the mean macro-averaged Precision (P), 

Recall (R), and number of classes (C) discovered by Listen 

Learner. Standard deviations are shown in parentheses. 

Baseline Comparisons 

We further contextualize the accuracy of our system, we also 

compared its performance against two baselines implemented 

using Scikit-Learn [52]. We selected two standard clustering 

algorithms for comparison: a soft-labelling clustering algo-

rithm (GMM with full covariance) and a hard-labelling clus-

tering algorithm (K-Means). The number of clusters for both 

algorithms were chosen by maximizing an objective score 

using brute-force search from 1 to 42 clusters (i.e., the average 

number of clusters from the in-the-wild investigation). The ob-

jective score of the GMM was the Bayesian Information Cri-

terion (BIC), and the objective score of the K-Means algorithm 

was the gap statistic [71]. Other parameters were left at default 

values, and we found that varying them did not lead to signif-

icant changes.  

In comparing Listen Learner’s performance to baseline clus-

tering algorithms, we considered different types of errors and 

performance tradeoffs. The results of our experiments are 

shown in Table 3. Note that unlike the F1accept metric which is 

computed only for discovered classes, we computed Precision 

and Recall for all samples by grouping non-discovered classes 

in an “Other” category. In general, Listen Learner’s classifi-

cation accuracy for discovered classes is higher than or equal 

to either of the baselines, with a caveat that our system may 

not discover all classes automatically. 

From a practical standpoint, we believe that fewer, more reli-

able classifiers are more useful for HAR applications, espe-

cially for end-users. In our future work section, we discuss 

methods for incorporating explicit user input in the class dis-

covery process. Figure 6 shows each algorithm’s confusion 

matrix for the Apartment Kitchen environment, where all 

three algorithms performed relatively well (Table 3). Listen 

Learner achieves high Precision by ignoring samples with 

lower confidence, which is consistent with its lower Recall 

(Table 3). We believe this is acceptable for our use-case, as 

human activity is generally sustained across several windows. 

Effect of Sound Direction  
The use of our own sensing hardware for collecting a real-

world dataset allowed us to integrate sound directionality in-

formation for identifying and classifying objects of interest. 

Figure 7 shows the distribution of the direction information for 

four classes in our data. In some cases, directionality 

Room Baseline 

(GMM) 

Baseline (K-

Means) 

Listen Learner (Bal.) 

 P R P R C P R 

ESC-

10 

0.10 

(0.03) 

0.12 

(0.01) 

0.70 

(0.07) 

0.52 

(0.03) 

6.0/10 0.83 

(0.06) 

0.33 

(0.01) 

U8K 0.19 

(0.05) 

0.23 

(0.02) 

0.47 

(0.06) 

0.40 

(0.03) 

7.9/10 0.68 

(0.02) 

0.33 

(0.04) 

Apt. 

Bath. 

0.23 

(0.05) 

0.37 

(0.06) 

0.82 

(0.05) 

0.58 

(0.02) 

5.0/7 0.85 

(0.02) 

0.58 

(0.02) 

Apt. 

Kitch

en 

0.69 

(0.09) 

0.60 

(0.06) 

0.82 

(0.02) 

0.65 

(0.01) 

3.0/6 0.97 

(0.00) 

0.87 

(0.00) 

Bath-

room 

0.24 

(0.11) 

0.37 

(0.11) 

0.81 

(0.04) 

0.50 

(0.03) 

2.7/5 0.70 

(0.10) 

0.56 

(0.22) 

Fab. 

Wksh

. 

0.80 

(0.07) 

0.82 

(0.04) 

0.92 

(0.02) 

0.76 

(0.02) 

5.0/7 0.85 

(0.00) 

0.61 

(0.00) 

Elec. 

Wksh

. 

0.35 

(0.06) 

0.44 

(0.06) 

0.84 

(0.03) 

0.71 

(0.03) 

2.0/7 0.87 

(0.03) 

0.79 

(0.04) 

Office 0.53 

(0.13) 

0.60 

(0.10) 

0.91 

(0.01) 

0.75 

(0.01) 

1.0/5 0.95 

(0.00) 

0.96 

(0.00) 

 
Figure 5. Evaluation results from offline and real-world datasets for the Balanced setting. This chart plots our performance met-

rics over days of learning. 
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information can be helpful in the recognition of stationary ob-

jects (e.g., Figure 7A). However, there are also cases where 

directional information does not form clean clusters, even for 

stationary objects (e.g., Figure 7, C & D), which we hypothe-

size is due to multipath and poor autocorrelation with white-

noise-esque signals (e.g., running faucet).  

Overall, we found that the inclusion of directionality infor-

mation does not increase classification accuracy (p=0.47) or 

accept rate (p=0.59). However, in some rooms (bathroom), the 

inclusion of direction can lead to increases in F1 score of up to 

+0.16. We hypothesize that many of our tested audio classes 

in that particular environment (e.g. faucet, urinal, toilet) pro-

duced similar sounds which were more easily differentiated 

using directional information.  

Another assumption of using directionality information is that 

the position and orientation of the recording device does not 

change overtime. Our data collection procedure made this as-

sumption and approximated a smart speaker whose location 

remained unchanged throughout data collection. In the future, 

using IMUs integrated in some consumer smart speakers (such 

as the Apple HomePod [5]), movement could be detected and 

trigger the system to recalibrate. 

INTERACTION STRATEGIES 

In our initial pilots, we explored “digest”-style labeling strate-

gies, in which clips were replayed to users before a label was 

solicited. However, this required storing raw audio, which car-

ries a significantly privacy cost. Thus, we focused on in situ 

labeling instead. While the primary mode of interaction we 

have discussed so far requires users to respond to an open-

ended queries (e.g., “what was that sound?”), there are many 

other approaches for eliciting user input to label, confirm, and 

disambiguate classes.  

One such approach is to use a pre-trained model to assign ini-

tial labels to clusters, and users are instead asked for a confir-

mation (e.g., “was that a microwave?”). This interaction can 

also be used to confirm previous labels and perform correc-

tions if needed. Likewise, when a sound event falls within an 

ambiguous cluster boundary, the system can ask a disambigu-

ation query (e.g., “was that a microwave or a faucet?”). Such 

techniques can streamline the labeling process and verify the 

correctness of a labelled classifier. 

Interaction Study 

We sought to explore and quantify several interaction strate-

gies enabled by our system (i.e., open-ended, confirmatory, 

and refinement; Figure 8) through a follow-up study. We were 

particularly interested in 1) how each interaction modality was 

perceived by users, and 2) the corresponding accuracies of the 

resulting labels. 

For this, we ran a user study with 12 participants (6M/6F, ages 

21-35, average age 26.8, seven native English speakers). We 

selected five portable items (handheld sander, pitcher of water, 

hairdryer, fan, and hammer) from rooms used to create our 

real-world dataset (Apt. Bathroom, Apt. Kitchen, Wood 

Workshop., Electronics Workshop). For each item, we ex-

tracted the corresponding un-labelled classifier generated from 

our evaluation and used it to preload the system. We distrib-

uted the items around the study room and labelled them with 

numbers. We informed participants that their job was to “teach 

the smart speaker about what was going on around it.”  

In each round of data collection, we programmed our system 

to ask participants one of the three query types: open-ended, 

confirmatory, or refinement. For refinement queries, our sys-

tem made a best guess and then randomly selected a second 

class. Upon the prompt, participants were told to stop their cur-

rent activity, respond to the query, and then continue. To in-

vestigate the “annoyance” of each interaction type, we also 

varied query frequency as a second condition. When the sys-

tem recognized an audio event the probability (10%, 50%, or 

90%) that a query would be presented. With 3 query types and 

3 query frequencies, there were 9 rounds in total (randomized 

 
Figure 6. Visualization of the different sources of error for GMM (left), K-Means (center), and Listen Learner (right) in the Apart-

ment Kitchen environment. True labels are listed on the y-axis and predicted labels are on the x-axis. Note Listen Learner contains 

fewer classes because classes below a confidence threshold are ignored. The “other” category consists of classes not yet discovered 

by Listen Learner, which are ignored. 

 
Figure 7. Audio direction of example classes: coffee grinder 

(A), speech (B), faucet (C), and refrigerator door. The center 

dot represents the placement of the sensing device.  
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order). Within each round, participants used all five items for 

20 seconds each, in a random order. Following each round, 

participants filled out a raw NASA TLX assessment. At the 

end of all nine rounds, we conducted a exit interview asking 

participants about their experience with our system.  

Results 

The results of our study are shown in Tables 4 and 5. We were 

primarily interested in the effect different interactions had on 

our system accuracy and how users perceived our system. 

Thus, our metrics included Assignment Accuracy (i.e., portion 

of classes correctly labeled at the end of each session) and user 

feedback. While we asked users to fill out all six scales of a 

Raw NASA TLX assessment, we found that most scales had 

little variation, and so we report only the Frustration scale 

which had the highest variance. We believe this measure to be 

a reasonable proxy for annoyance and intrusiveness. We con-

ducted statistical analysis of our results using Bonferroni-cor-

rected unpaired t-tests. 

At the end of each session (i.e., one round of using each item), 

around 90% of classes were correctly labeled by Listen 

Learner. This confirms that relatively low recall is acceptable 

for our use-case, as human activity is generally sustained. Al-

tering the query frequency and type did not affect this in a sta-

tistically significant way. This is encouraging because it sug-

gests that users can be queried relatively infrequently while 

still offering high accuracies.  

As expected, participants became more frustrated with the sys-

tem when it asked more questions, though this was also was 

not statistically significant. In terms of utterance duration, 

Confirmatory queries had the shortest responses ( 𝑀𝑐 =
1.51, 𝜎𝑐 = 1.21) compared to refinement (p<0.01, T=5.7) and 

open-ended queries (p<0.01, T=11.2). Refinement queries 

produced the second shortest responses (𝑀𝑟 = 2.27, 𝜎𝑟 =
1.33 ), and Open-ended queries resulted in the longest re-

sponses (𝑀𝑜 = 2.81, 𝜎𝑜 = 1.57). Query type did not have a 

statistically significant impact on Assignment Accuracy or 

TLX Frustration, though we note on average refinement que-

ries resulted in the least frustration.  

Interestingly, when interviewed, participants gave different 

preferences. When asked to rank their preference of the differ-

ent query types, 9 out of 12 participants said they preferred 

confirmation-style questions, noting it was “easier to answer” 

(P2, P4, P9). Compared to refinement questions, participants 

noted that confirmatory questions were preferred due to 

shorter questions, which were seen as requiring less mental ef-

fort to hear correctly and remember (P2, P5). Another factor 

was that since the second label for refinement questions was 

randomly chosen for this study, participants felt “discouraged 

when both the guesses were wrong” (P1, P4). Only one partic-

ipant (P10) ranked refinement questions above confirmatory 

questions, commenting “I liked the comparisons because I 

knew exactly which inputs [the agent] expects”, which echoed 

his complaint that “the [agent] doesn’t always understand 

me." Most users (10/12) became annoyed when the system 

asked too many open-ended questions, noting that the interac-

tion became “repetitive, like a 2 year old” (P12). Nevertheless, 

one participant (P8) maintained that answering open-ended 

queries was easier because “I don’t have to think about the 

question, I just say what I’m doing”. Overall, participants pre-

ferred to have at most 1 to 2 open-ended questions per class 

followed by another type of query for any follow-ups. 

Participants were also asked about their preference of question 

frequency, and almost all (11/12) participants preferred that a 

virtual assistant ask as infrequently as possible. Still, many of-

fered situations where they found it acceptable for more fre-

quent interactions. P4 noted that if he purchased a device with 

a contextually-aware agent, he expects the agent “to work out 

of the box for core stuff… I’m not here to teach the [agent] 

how to do its job…” but added “for things specific to my life, I 

would be ok with answering questions.” Some participants 

also saw certain types of queries (e.g., confirmation questions) 

as a type of feedback, which would be beneficial for certain 

 
Figure 8. Interaction implications made possible through Lis-

ten Learner. We show examples of open-ended (top). confirm-

atory (middle), and refinement queries (bottom). 

Table 4. Metrics by trigger probability, query frequency, as-

signment accuracy (portion of correctly labeled classes), and 

TLX Frustration. 
Trigg. Prob. Follow-ups/min Assign. Acc. TLX (Frus.) 

10% 3.63 0.88 (=0.16) 5.31 (=4.30) 

50% 6.20 0.93 (=0.12) 5.39 (=4.16) 

90% 7.20 0.88 (=0.13) 6.67 (=5.23) 

 

Table 5. Metrics by query type, response length in # of words, 

assignment accuracy, and TLX Frustration. 
Query Type Resp. Length Assign. Acc. TLX (Frus.) 

Open-ended 2.81 0.88 (=0.14) 6.81 (=5.31) 

Confirmatory 1.51 0.94 (=0.09) 5.43 (=4.47) 

Refinement 2.27 0.87 (=0.16) 5.17 (=4.03) 
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agent-controlled tasks, such as locking the door (e.g., “did you 

just go outside? I’ll lock the door”) when leaving the house 

(P8). Finally, other participants noted that their willingness to 

respond to queries depended on the interruption cost of their 

current activity (P2, P3, P5) – “If I was hammering, then I 

wouldn’t mind stopping, but having to stop the hairdryer and 

turn it back on was annoying” (P3). When asked to give a 

rough threshold of how many times they would be willing to 

be interrupted by an agent, responses ranged from 1 to 2 times 

per minute of performing the activity (P2, P7) to once an hour 

(P5, P12). 

LIMITATIONS AND FUTURE WORK 

The biggest limitation of Listen Learner is its inability to ex-

plicitly include classes of interest, and the high computational 

cost of model training (relative to traditional approaches). We 

speculate that accuracy could be improved with better embed-

dings (e.g., using ResNet instead of VGG) or improved set-

tings (i.e., higher sampling rates). It is also possible to incor-

porate algorithmic changes that support learning through di-

rected examples. Likewise, while our computational cost is 

relatively high, our algorithm does not need to be run in real-

time and can be scheduled to run periodically (e.g., run over-

night to process the day’s data). 

Currently, our system is able to detect simultaneous events 

during inference, assuming instead that events are segmented 

and non-overlapping during training. However, in a real world 

setting, it is common for multiple events to occur simultane-

ously, making it difficult to segment audio based on our cur-

rent adaptive amplitude threshold. We intend to investigate 

classical [11] and deep-learning based [27][31] audio separa-

tion (blind signal separation) techniques to further increase the 

efficacy of our algorithm. While these techniques have tradi-

tionally been applied to speech, they could be adapted to great 

benefit in this domain. In addition, other methods of clustering 

and classification can be used to better support the considera-

tion of user-provided examples. 

Finally, sensor fusion approaches are possible. Our evalua-

tions show that our current hardware’s sound directional infor-

mation does not significantly improve event clustering; how-

ever, this information may be useful for sound isolation using 

beamforming techniques [18]. In addition, other sensing hard-

ware (e.g., motion, vibration, temperature) could also comple-

ment audio input to expand the set of activities accessible to 

Listen Learner. 

EXAMPLE APPLICATIONS 

We believe that the capabilities enabled by Listen Learner can 

serve as a foundation to enable many context-driven interac-

tive experiences. In this section, we briefly describe several 

illustrative applications we implemented. 

Wearables and Health. We built a smartwatch application that 

performs cross-modal learning of both acoustic and motion 

(e.g., IMU) information. Acoustic data streams are clustered 

using Listen Learner. Semantic labels from acoustic data are 

used to segment and train motion models. This multi-modal 

training scheme can then be used to extract e.g., a user’s health 

habits. 

Home and Accessibility. We built a smart speaker application 

that leverages Listen Learner to label acoustic events to aid 

accessibility in the home. For example, the system can ask a 

confirmatory query: “was that a doorbell?”, in which the user 

responds with a “yes.” Once a label is established, the system 

can offer push notifications and other actions whenever the 

event happens again. This interaction links both physical and 

digital domains, enabling experiences that could be valuable 

for users who are e.g., hard of hearing. 

Workflow Optimization. We built a desktop application plugin 

that clusters offline audio streams (e.g., podcasts, or field re-

cordings) and prompts the user for labels. Once a label is pro-

vided, it is propagated across the entire audio stream. This 

workflow is a useful first-pass for tasks that involve audio an-

notation of extremely long recordings (e.g., WildDolphinPro-

ject.org, GreatElephantCensus.com, which requires finding 

animal sounds from 100+ hours of field recordings). 

CONCLUSION 

We have presented Listen Learner, a system that seeks to ena-

ble high-accuracy, low-effort acoustic activity recognition us-

ing one-shot user labeling. We built a hardware and software 

implementation that gradually discovers new event classes 

from the environment with no user demonstration or training 

involved. We designed our system to support a tunable param-

eter that prioritizes either the number of discovered classes or 

the model’s classification accuracy, and we evaluated each 

setting on two downloaded datasets and one real-world dataset 

collected using our own hardware. We also conducted a user 

interaction study that explored several approaches to user la-

beling. Our results show that Listen Learner provides accuracy 

levels suitable for common activity recognition use-cases and 

can augment or complement existing methods, bringing the vi-

sion of context-aware interactions closer to reality. 
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