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ABSTRACT 
Despite sound being a rich source of information, computing 
devices with microphones do not leverage audio to glean 
useful insights about their physical and social context. For 
example, a smart speaker sitting on a kitchen countertop can-
not figure out if it is in a kitchen, let alone know what a user 
is doing in a kitchen – a missed opportunity. In this work, we 
describe a novel, real-time, sound-based activity recognition 
system. We start by taking an existing, state-of-the-art sound 
labeling model, which we then tune to classes of interest by 
drawing data from professional sound effect libraries tradi-
tionally used in the entertainment industry. These well-
labeled and high-quality sounds are the perfect atomic unit 
for data augmentation, including amplitude, reverb, and mix-
ing, allowing us to exponentially grow our tuning data in 
realistic ways. We quantify the performance of our approach 
across a range of environments and device categories and 
show that microphone-equipped computing devices already 
have the requisite capability to unlock real-time activity 
recognition comparable to human accuracy. 
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CCS Concepts 
Human-centered computing~ Ubiquitous and mobile com-
puting systems and tools. 

INTRODUCTION 
Microphones are the most common sensor found in con-
sumer electronics today, from smart speakers and phones to 
tablets and televisions. Despite sound being an incredibly 

rich information source, offering powerful insights about 
physical and social context, modern computing devices do 
not utilize their microphones to understand what is going on 
around them. For example, a smart speaker sitting on a 
kitchen countertop cannot figure out if it is in a kitchen, let 
alone know what a user is doing in a kitchen (Figure 1A). 
Likewise, a smartwatch worn on the wrist is oblivious to its 
user cooking or cleaning (Figure 1B). This inability for 
“smart” devices to recognize what is happening around them 
in the physical world is a major impediment to them truly 
augmenting human activities. 

Real-time, sound-based classification of activities and con-
text is not new. There have been many previous application-
specific efforts that focus on a constrained set of recognized 
classes [18, 35, 42, 41]. For example, Ward et al. [41] devel-
oped a microphone-equipped necklace in conjunction with 
accelerometers mounted on arms that could distinguish be-
tween nine shop tools. In these types of constrained uses, the 
training data for machine learning is generally domain-spe-
cific and captured by the researchers themselves.  
We sought to build a more general-purpose and flexible 
sound recognition pipeline – one that could be deployed to 
an existing device as a software update and work immedi-
ately, requiring no end-user or in situ data collection (i.e., no 
training or calibration). Such a system should be “plug-and-
play” – e.g., plug in your Alexa, and it can immediately dis-
cern all of your kitchen appliances by sound. This is a 
challenging task, and very few sound-based recognition sys-
tems achieve usable end-user accuracies, despite offering 
pre-trained models that are meant to be integrated into appli-
cations (e.g., Youtube-8M [2], SoundNet [4]). 

We propose a novel approach that brings the vision of plug-
and-play activity recognition closer to reality. Our process 
starts by taking an existing, state-of-the-art sound labeling 
model and tuning it with high-quality data from professional 
sound effect libraries for specific contexts (e.g., a kitchen and 
its appliances). We found professional sound effect libraries 
to be a particularly rich source of high-quality, well-seg-
mented, and accurately-labeled data for everyday events. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 

UIST ‘18, October 14-17, 2018, Berlin, Germany 
© 2018 ACM. ISBN 978-1-4503-5948-1/18/10…$15.00 
https://doi.org/10.1145/3242587.3242609 

 

 
Figure 1. Ubicoustics is an activity sensing system that takes advantage of the ubiquity of microphones in modern consumer 
electronics. Our system starts with state-of-the-art sound labeling models trained on millions of online videos, which are tuned 
to classes of interest using data from professional sound effect libraries. This enables real-time activity recognition without any 
end user or in situ training, across diverse hardware platforms, including smart speakers (A), smartwatches (B), tablets (C), 

phones (D), IoT sensors (E) and laptops (F). 



These large databases are employed in the entertainment in-
dustry for post-production sound design (and to a lesser 
extent in live broadcast and digital games).  

Sound effects can also be easily transformed into hundreds 
of realistic variations (synthetically growing our dataset, as 
opposed to finding or recording more data) by adjusting key 
audio properties such as amplitude and persistence, as well 
mixing sounds with various background tracks. We show 
that models tuned on sound effects can achieve superior ac-
curacy to those trained on internet-mined data alone. We also 
evaluate the robustness of our approach across different 
physical contexts and device categories. Results show that 
our system can achieve human-level performance, both in 
terms of recognition accuracy and false positive rejection.  

Overall, this paper makes the following contributions in the 
area of activity recognition and ubiquitous sensing: 

1. We developed a real-time, activity recognition system that 
demonstrates accuracies and class diversity approaching 
end user feasibility, requiring no in-situ data collection, 
and using nothing but commodity microphones for input. 

2. We ran a comprehensive suite of experiments that quan-
tify the performance of our system across 4 data 
augmentations, 7 device categories, 7 location contexts, 
and 30 recognition classes, providing insights into the fea-
sibility of sound-based activity recognition that generalize 
beyond our implementation.  

3. In addition to conventional testing with existing sound da-
tasets, we move beyond prior work by capturing a new, 
real-world dataset with improved ecological validity. We 
also benchmark our results against human accuracy (600 
participants) to better contextualize performance.  

4. Finally, we share our data, processing pipeline and trained 
models to facilitate replication and new uses.  

WHY SOUND EFFECTS? 
Sound effect libraries have several fundamental properties 
that make them ideal for training machine learning models, 
which we now describe. 

Properties of Sound Effects 
First, sound effects are atomic – a clip labeled as “door 
knock” or “cat meow” is tightly segmented and contains only 
that one sound. Sound effects are also pure – clips are gen-
erally recorded in professional studios and are devoid of 
artifacts like background noise and echoes. Such purity is 
mandatory, as the sounds are meant to be transformed and 
composited into richer soundscapes. Third, sound effect li-
braries are diverse; post-production sound editors search for 
the perfect sound based on the materials in the scene and 
mood of the shot. For this reason, libraries often contain hun-
dreds of variations of the same sound effect. 
Properties of Sound 
Sound itself has three important properties. Foremost, sound 
data is scalable, both in amplitude and duration. Second, 
sounds are transformable, able to be projected into synthetic 

environments by altering their equalization (“EQ”), reverb 
and damping (i.e., persistence). In this manner, an effect can 
be made to sound like it is in a furnished living room or small 
bathroom. Finally, audio is innately additive (though not sub-
tractive), allowing two or more effects to be trivially 
blended. We can take a sound effect and trivially combine it 
with an ambient track of a bustling market, tranquil forest, or 
ambient hum of HVAC. 
Taken together, this means we can take a single sound effect, 
and transmute it into hundreds of realistic variations. When 
applied to entire sound effect libraries, we can achieve a scale 
of data ideal for training deep learning models, while retain-
ing all of the benefits of a highly-curated corpus. We show 
in our subsequent evaluation that such models outperform 
those trained on comparably-sized, internet-mined data. 
Categories of Sound Effects 
There are three main categories of sound effects: hard, natu-
ral, and background sounds [30]. Hard sounds are closely 
linked to on-screen action (e.g., cough, door closing). Natu-
ral sounds are subtle effects that add realism to a scene and 
action (e.g., leaves rustling, fabric chafing). Finally, back-
ground sounds (e.g., HVAC hum, engine noise) are used to 
build immersive soundscapes, smooth breaks in dialogue, 
and anchor visual transitions. In Ubicoustics, we rely on hard 
sounds for our training data and use background sounds for 
our mix augmentations, described later. 

We note that many professional sound effects are produced 
through Foley – the recreation or simulation of a sound. In 
interviews with sound production and Foley artists (with on-
screen credits) conducted as part of background research, we 
found that Foley is generally used when scenes require pre-
cise audio-visual timing (e.g., person walking on snow) or 
for actions where natural examples are rare (e.g., blood spat-
ter). We confirmed that the commonplace environmental 
sounds that we focus on are rarely Foleyed, as these are eas-
ier and cheaper to record than simulate (e.g., coughing, toilet 
flush, blender, vacuum).  

RELATED WORK 
There are many approaches for sensing human activity, from 
special-purpose sensors such as geophones [17], water pres-
sure sensors [12], powerline sensing  [15] and RF tags [21],  
to generic approaches such as computer vision [19]. In this 
section, we focus on sound-driven methods that most closely 
relate to our efforts. 

Sound Event Classification 
There are a number of machine learning models that leverage 
publicly-available audio datasets to classify sound events. 
For instance, Salamon et al. [33] employed scattering 
transform for urban sound classification (classes include 
jackhammer and car horn), while Foggia et al. [11] employ 
a bag of words-based approach with a multi-class SVM for 
detection for surveillance uses (e.g., screaming, glass 
breaking, gunshot). Sound has also been used for scene and 
context recognition, for example, Eronen et al. [10] used 



clustering and hidden Markov models for audio context 
recognition (including outdoors, vehicles and homes).  

More recently, deep learning has been applied to sound event 
classification. For example, Lane et al. leverage several fully 
connected layers for audio sensing in DeepEar [18], which 
focused on classification of high-level categories. The 
closest to Ubicoustics is a four-class “voicing, music, water 
and traffic” set, which is quite different from the fine-grained 
activity classes we aim to support (toilet flushing, chopping, 
knocking, coughing, microwaving, typing, etc.). SoundNet 
[4] used video data and computer vision to identify objects 
in a scene, and then used the resulting labels to learn sounds. 

Convolutional neural networks (CNNs) have also been 
employed for sound event classification. McLoughlin et al. 
[24], Ephrat et al. [8] and Phan et al. [28] present CNN-based 
deep learning architectures, while Parascandolo et al. [27] 
use Convolutional Recurrent Neural Networks (CRNNs). 
Hershey et al. [16] compare various CNN architectures for 
acoustic event detection and benchmark on the AudioSet 
dataset [13]. The Never-Ending Learner of Sounds (NELS) 
[8] crawls the web, continuously training a CNN using semi-
structured online data, creating an index of sounds. We 
leveraged this prior work heavily in the design of our system.  

Sound data augmentation has also been previously explored 
to improve the robustness of acoustic classification models. 
For example, McFee et al. [23] used pitch shift, time stretch, 
dynamic range compression, and background noise addition 
for music. Salamon et al. [32] used the same augmentation 
techniques in conjunction with a CNN, evaluating on the Ur-
banSound8K dataset. We drew inspiration from these prior 
efforts when developing our own set of augmentations.  
Real-Time, Sound-Driven Activity Recognition 
Beyond “offline” event labeling, sound has long been used 
for inferring real-time activities. Likely the most pervasive 
system is ShotSpotter [35], which provides gunshot detection 
and localization for law enforcement. For a more general set 
of activities, Stork et al. [37] used Mel-frequency cepstral 
coefficients (MFCC) with non-Markovian ensemble voting 
to discriminate among 22 human activities from bathroom 
and kitchen contexts (including blender mixing, pouring wa-
ter, sorting dishes). Lu et al. [22] demonstrated speech, 
music and ambient sound detection using a phone micro-
phone. Synthetic Sensors [20] used a custom board equipped 
with acoustic sensing capabilities (among many sensor chan-
nels) to distinguish 38 environmental events. There have also 

been portable systems using body-worn microphones and ac-
celerometers, including the Mobile Sensing Platform [40], 
BodyScope [42] and work by Ward et al. [41]. This prior 
work requires training within a user’s environment and fo-
cuses on specific domains and devices. 

UBICOUSTICS 
We now describe our process for enabling ubiquitous acous-
tic activity sensing, which is illustrated in Figure 2. 

Contexts and Classes 
The first step is defining a context of use (e.g., construction 
site, hospital, dentist office, café), which limits the set of 
classes to be recognized. These classes can then be mined 
from sound effect libraries, often just by using the name of 
the class itself as the search term, though we found more 
clips can be identified with some keyword variation (e.g., not 
just “faucet”, but also “water running”, “water flowing”, “tap 
dripping”, etc.). The result is a large corpus of sound effects 
covering the classes of interest. 

Sound Pre-Processing 
Once the corpus is assembled, we standardize all sounds into 
a single format, as libraries come in different file formats 
(e.g., WAVs, AIFFs), bit depths (8 to 32 bits), sample rates 
(16-48 kHz), and number of channels (mono to 5.1 surround 
sound). We selected 16 kHz mono (16-bit) as our standard 
format, as we found this to be the lowest common denomi-
nator. Once converted, we removed silences greater than one 
second anywhere in the clip. At this point, we have what we 
call an “original” sound set (i.e., no augmentations).  

Amplification Augmentation 
To begin to add variation to a sound dataset, we first apply 
an amplitude augmentation. We produce two variations for 
each input sound (Figure 3), one quieter (25% of original 
volume) and one louder (raising peak amplitude to -0.1dB). 

  
Persistence Augmentation 
Our next augmentation modifies the persistence of a sound 
effect (Figure 4), which includes reverberations and non-
linear damping (see e.g., [7, 31] for more background). By 

 
Figure 3. Amplifications (quiet, loud) applied to a sound effect. 

 
Figure 2. Ubicoustics process overview. We use a corpus of augmented sound effects to tune a state-of-the-art sound model 

(e.g., YouTube-8M, trained on 8 million videos) for a particular end user application. We perform a context-based confidence 
thresholding to improve robustness, especially for “unknown” sounds. 



modifying these parameters, we can simulate sounds in a 
variety of physical spaces (e.g., kitchen, hallway, bathroom).  

We used two methods to generate realistic persistence trans-
formations. First, we selected six professional “reverb” 
effects provided by Adobe Audition (Figure 6, grey 
dots).  Second, we created four custom convolutional reverbs 
by capturing impulse functions [3] in exemplary rooms: a 
bathroom, large atrium, workshop and small office (Figure 6, 
green dots). To create these custom effects, we placed a 
speaker/microphone setup in a target room. We then emitted 
a sinusoidal sweep and recorded the frequency response, 
which we de-convolved into an impulse function. We plot 
our ten persistence transformations in Figure 6 by the size of 
room and absorption level. In total, this augmentation pro-
cess yields ten new sounds for every input sound.  

 
Mixing Augmentation 
Our next augmentation blends sound effects with back-
ground sounds we sourced. This mixing process introduces 
foreign elements to original sounds, adding variability (Fig-
ure 5). Each input sound is mixed with a randomly selected 
background segment, which includes indoor (e.g., HVAC), 
outdoor (e.g., birds chirping), urban (e.g., vehicle traffic), 
and social (e.g., cafe) background noise. In this way, we cre-
ate six new sounds for every input sound.  

 
Combining Augmentations 
Finally, we can stack and combine augmentations, creating 
even greater variety. For example, we can take a “brushing 
teeth” sound effect and make it louder, apply a bathroom-like 
reverberation, and add background noise from an exhaust 
fan. Note the order of operations is important. For instance, 
background tracks generally already include reverb, as they 
are recorded on location, and thus re-projecting them into a 
second environment leads to less realistic output.  

Featurization 
Once the sound dataset is assembled, we compute its fea-
tures. There are many existing featurization stacks for audio 
data; in our implementation, we chose the method described 
in Hershey et al. [16]. First, we segment files into 960 ms 

audio segments and compute short-time Fourier Transforms 
for each segment (using a 25 ms window and step size of 
10 ms), which yields a 96-length spectrogram. We then con-
vert our linear spectrogram into a 64-bin log-scaled Mel 
spectrogram and generate a 96×64 input frame for every 
960 ms of audio (see Figure 7), which is fed into our classi-
fication model. 

Model Architecture 
We build upon the YouTube-8M VGG-16 [16] model, which 
is a variant of the VGG16 architecture trained on 8 million 
YouTube videos. The architecture contains four convolu-
tional layers (3×3 kernel, step size = 2, depth = 64, 128, 256, 
and 512, ReLU activation [25]), with intermediary max pool 
layers [14], and a 128-wide fully connected embedding layer. 
We modified this pre-trained model by removing the last 
fully connected layer and replacing it with our own fully con-
nected layer, using a sigmoid activation function. Finally, we 
tune the entire architecture with our sound effect datasets. 

Devices 
In a commercial implementation, we envision models run-
ning locally on devices, as opposed to streaming data to 
cloud infrastructure as is common today. Local classification 
has obvious latency and privacy benefits. As a proof of con-
cept, we deployed our model to three exemplary devices 
spanning a range of computational abilities: Apple MacBook 
Pro 2017, iPhone 7 smartphone, and Raspberry Pi Zero W 
with a ReSpeaker dual mic shield [34]. The models run at 
15.2, 8.3 and 0.7 frames per second on these devices respec-
tively. This performance is already sufficiently granular for 
most of the activities we studied (which last on the order of 
seconds), and suggests that with additional engineering and 
optimization, interactivity on embedded devices is possible. 

Open Model and Data 
We make our training datasets, architecture, trained models, 
visualization tools and data collection pipeline available for 
researchers and practitioners to build upon. It consists of pro-
cessed Mel spectrograms of our original and augmented 
sound effects. We also include the raw WAV files and pro-
cessed Mel spectrograms for sounds captured in our “in-the-
wild” data collection across seven devices (see Evaluation 
section). http://www.github.com/FIGLAB/ubicoustics 

 
Figure 4. Custom bathroom and atrium impulse functions, 

and their resulting persistence of sound augmentations. 

 
Figure 5. Mixing augmentation applied to a sound effect: in-

door (top), and outdoor (bottom) ambient sounds. 

 
Figure 6. Persistence of sound transformations plotted  

by room size and sound absorption. 



EVALUATION 
We sought to answer several key questions: What is the per-
formance of a classifier tuned with sound effects? Does 
sound augmentation improve performance? How well does 
the model perform when tested on live, real-world data? 
Does the model work across different devices? And how 
does our technique compare to human accuracy? 

Contexts 
For our evaluation, we selected seven location contexts in 
which everyday activities occur: 1) bathroom, 2) bedroom, 
3) house entrance, 4) kitchen, 5) office, 6) outdoor and 7) 
workshop. These contexts offer realistic scenarios with con-
strained event classes. For instance, it is highly unlikely for 
a “blender” event to occur in a bathroom, or for “chopping” 
to happen in a bedroom. This permits us to tune models for 
particular contexts with more tractable class sets. 

Classes 
For each context, we selected commonplace events using the 
following selection criteria: a) does the event happen fre-
quently in that context? b) does it produce enough acoustic 
energy to be heard by a microphone? and c) can knowledge 
of the event enable useful applications? In total, we selected 
30 events across our seven test contexts (Figure 7).  

Sound Sources 
There are dozens of large sound effect libraries to draw upon 
for tuning data. As a representative cross-section, we se-
lected five libraries that were available online or licensed by 
our institution, listed in Table 1.  
 

 

Name Total 
Sounds 

Sounds 
Used  

Hours 
Used 

BBC Sound Library [5] 29K 740 1.9 

Network Sound Library [26] 10K 492 1.3 

Soundsnap [36] 250K 4072 10.4 

FreeSound [43] 372K 8929 22.2 

AudioSet [13] 2000K 7899 18.2 

Table 1. The sound sources we used for our datasets. 

Tune and Test Sets 
From the sources listed in Table 1, we extracted sound data 
covering our 30 classes. We split this corpus into train (i.e., 
tune) and test sets: SFX-Orig and SFX-Test. Our models are 
also tuned on different augmentations of SFX-Orig: amplifi-
cation (SFX-Amp), persistence of sound (SFX-Persist), and 
mixing (SFX-Mix). We also created a corpus containing all 
augmentations (SFX-All), comprising almost 500 hours of 
sounds clips for our 30 classes. These various datasets are 
summarized in Table 2. 

Set Name Contains Data Hours 
SFX-Orig Processed, but otherwise unaugmented sounds  54.6 
SFX-Amp SFX-Orig + Amplitude Augmentations 152.0 
SFX-Persist SFX-Orig + Persistence Augmen. (15% draw) 136.2 
SFX-Mix SFX-Orig + Mix Augmentations (75% draw) 300.6 
SFX-All SFX-Orig + SFX-Amp + SFX-Persist + SFX-Mix 479.5 
SFX-Test Unaugmented sounds; holdout test set. 8.8 
In-the-Wild 
Test 

Sounds recorded on seven exemplary devices 
(see Table 3); holdout test set. 

12.3 

Table 2. Summary of datasets we created for our evaluations.  

Test Devices 
In order to test the robustness of our models across different 
microphones, placements, and platforms, we developed soft-
ware to capture and stream audio from a diverse set of 
hardware platforms (Table 3). These devices connected over 
various means to an independent laptop capable of recording 
synchronized streams and performing live classification.  

Device Type Implementation Comm. 
Smartphone 
(two placements) iPhone 5C, Swift iOS app Wi-Fi 
Smartwatch LG W100, Android app Bluetooth 
Smart speaker Jabra Speak 410 USB 
IoT Sensor Custom hardware Bluetooth 
Laptop MacBook Pro 2013, Python app Wi-Fi 
Tablet iPad 3, Swift iOS app Wi-Fi 

Table 3. Devices we used to capture data for our In-The-
Wild Test set. Two identical smartphones were used to  

record on-table and in-pocket data. 

Figure 7. Example log Mel spectrograms (based on [16]) of 960ms audio for our 30 test event classes.  
These 96×64 input vectors are used to tune a VGG-16 model pre-trained on YouTube-8M. 



Collecting In-the-Wild Sounds 
In addition to evaluating our models on SFX-Test (8.8 hours 
of mined sound effects), we also wished to test on more eco-
logically valid “in-the-wild” dataset, captured not in a studio, 
but with microphones found in real-world devices recording 
in real-world environments. In response, we recruited 12 par-
ticipants (mean age 29.3) who performed or triggered events 
across 50 rooms, spanning dozens of homes and buildings. 
The experimenter used a laptop to synchronously capture au-
dio data from our seven test devices (Table 3). The interface 
allowed the experimenter to demarcate the start and end of 
events, as well as enter a ground truth label. 

When collecting data in a room (e.g., kitchen 5), devices 
were placed in a realistic fashion. For example, the laptop, 
tablet and smart speaker were placed on a logical flat surface, 
while participants wore the smartwatch, and the IoT sensor 
was plugged-in to a nearby power outlet. For the smartphone 
category, we captured data for two placements (using two 
identical phones): a) phone in a participant’s pocket, and b) 
phone on a surface. Devices were never more than 3 meters 
from an event source, and we avoided making changes to the 
physical layout of the space (no special tables, no appliances 
moved, etc.). 

In each location, we collected three rounds of data per event, 
in a random order. Sometimes this was activating an appli-
ance (e.g., running a microwave) while other times it was a 
physical task (e.g., chopping vegetables). In all cases, the 
materials and equipment were participants’ own. For events 
such as “coughing” and “laughing,” we asked users to per-
form the action as naturally as possible. We excluded events 
that were challenging to induce (e.g., baby crying, hazard 
alarm). All data was collected between 10am and 8pm; other 
occupants were free to go about their daily routines, which 
injected some natural noise. In total, we collected 12.3 hours 
of labeled/segmented data, which we call In-The-Wild Test. 
RESULTS AND DISCUSSION 
We now describe the results from a series of integrated ex-
periments. A summary of main study results can be found in 
Figures 8, 9, 13 and 14. First, we evaluate the “plug-and-
play” accuracy of Ubicoustics, including rejection of un-
known sounds. We then compare performance to human 
annotators, which serve as a gold standard. Finally, we in-
vestigate the effects of various augmentations, device 
categories, and location contexts.  

Accuracy 
For all accuracy metrics, we use clip-level prediction. More 
concretely, we record a model’s output across an entire 
sound clip and return the top predicted result, based on cu-
mulative confidence. As noted above, we use a dedicated 
model for each context (tuned only for classes that belong to 
that particular context). At the end of every tuning epoch, we 
checkpoint the model against both the SFX-Test and In-the-
Wild Test datasets respectively and report the accuracy of the 
best performing epoch (a common, but artificial method we 
improve upon in the next section).  

Overall, per-context models tuned on SFX-All and tested on 
SFX-Test achieved an average accuracy of 93.9% 
(SD=3.7%; Figure 8, SFX-All, green bar). When tested on In-
the-Wild Test, average accuracy dropped to 89.6% 
(SD=6.3%; Figure 8, SFX-All, blue bar). When we tune our 
model using only AudioSet data for our classes, the system 
achieves an average accuracy of 70.6% and 69.5% on SFX-
Test and In-the-Wild Test, respectively (Figure 8, AudioSet). 
This result underscores the significant boost in accuracy 
when tuning on sound effect libraries. If we disregard con-
text, and tune/test on all 30 classes, our SFX-All tuned model 
achieves an accuracy of 82.1% and 68.4% on SFX-Test and 
In-The-Wild Test respectively. 

Better Estimating Real-World Accuracy 
Although the aforementioned 89.6% accuracy follows a 
standard evaluation procedure, it does not offer a fair depic-
tion of “plug-and-play” accuracy, as one would experience 
in a real-world deployment. Foremost, when deploying to, 
e.g., a user’s home, there is no test data on which to check-
point model training. Second, real-world deployments are 
subjected to “unknown” sounds, never before heard by the 
classifier. Evaluating models using only classes they know 
offers no insights into how interactive systems will handle 
false positive events. Thus, we ran two additional experi-
ments to more conservatively estimate our system’s 
performance. 

First, we tuned per-context models using SFX-All, check-
pointed on SFX-Test, and evaluated on In-the-Wild Test. This 
procedure inherently removes checkpointing bias. Using this 
more stringent procedure, average accuracy across per-con-
text classifiers was 84.8% (SD=6.6%). 

As a second, even harder test, we devised an experiment that 
included 20% “unknown” classes (i.e., sounds we drew from 
other contexts) in the test set that the model should ignore. 
This required some alterations to our pipeline. Instead of 
many per-context models, we tuned a single model using 
data from all 30 classes in SFX-All. A sound is classified as 
“unknown” (and ignored) if no in-context class exceeds a 
confidence threshold. Using this evaluation procedure on In-
the-Wild Test (checkpointed on SFX-Test), we found an 
across-context accuracy of 80.4% (SD=6.4%; Figure 9, SFX-
All), which we believe is a much closer estimation of plug-
and-play performance. See Figures 11 and 12 for the confu-
sion matrices for these two experiments.  

 
Figure 8. Recognition accuracies when evaluated without  

any unknown classes and checkpointed on best model. 



Comparison to Human Performance  
While 100% accuracy is the ultimate goal of any interactive 
system, some problem domains are particularly ambiguous 
or challenging and can benefit from additional baselines to 
contextualize performance. In the case of sound classifica-
tion, humans offer an excellent gold standard, as they can 
draw upon a lifetime of real-world experiences and leverage 
contextual knowledge in sophisticated ways (e.g., a small 
motorized appliance in a kitchen is more likely to be a 
blender than a miter saw). As such, we conducted two studies 
to establish human accuracy on our SFX-Test and In-the-
Wild Test datasets.  

 
First, we ran a crowd-sourced study on Amazon Mechanical 
Turk. The crowd interface noted the context (e.g., office) and 
allowed users to play (and replay) a single sound (Figure 10). 
Given these two pieces of information, the task was to select 
the best label (e.g., telephone ringing) from a dropdown list 
of classes found in that context. Participants could also 

choose “unknown” if they felt none of the options were cor-
rect. In one round of labeling, each of our classes appeared 
once, plus seven out-of-context (“unknown”) sounds (one in-
jected for each context). 250 crowdworkers completed three 
labeling rounds on SFX-Test (producing 27,750 labels), and 
another 250 crowdworkers labeled our In-the-Wild Test set 
(producing 21,750 labels; less because our real-world data 
omitted 8 classes, e.g., baby crying). 

A potential danger in online studies is reduced accuracy from 
malicious or apathetic crowdworkers. Thus, as an additional 
human benchmark, we ran a monitored, in-lab study. This 
used the same interface and followed the same procedure as 
the crowd study, but collected four rounds of data instead of 
three. In total, 50 participants labeled 7,400 sounds from 
SFX-Test, and another 50 participants labeled 5,800 sounds 
from In-the-Wild Test.  

Across all contexts, the average accuracy on our SFX-Test 
data was 83.6% (SD=5.9%) for our crowd workers, and 
82.7% (SD=7.0%) for our in-lab participants. For our In-the-
Wild Test set, the accuracy was 83.9% (SD=6.6%) for our 
crowdworkers and 87.0% (SD=6.1%) for our in-lab labelers. 
For reference, under comparable test conditions, our system 
achieves 89.8% and 80.4% accuracy on SFX-Test and In-the-
Wild Test respectively (Figure 9), which is very close to hu-
man performance (no significant difference). See also Figure 
13 for a breakdown of human accuracy across contexts. 

 
Figure 10. Screenshot of web-based interface used in  

our human-accuracy baseline studies.  

 
Figure 9. Recognition accuracies when evaluated with unknown classes comprising 20% of the test data. In-the-Wild 

Test is checkpointed on SFX-Test to remove checkpoint bias (SFX-Test is checkpointed on SFX-Test). 

 
Figure 11. Confusion matrices for SFX-Test with 20% unknown classes. Class letter legend found in Figure 7 (∅ is unknown class). 
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Location Context 
We tested Ubicoustics’ performance across seven location 
contexts (Figure 13), which ranged from 77.4% in the 
kitchen to 93.9% in the bedroom. Model performance 
roughly correlates with human performance (R=0.63).  

Limiting classes to a context is only possible if a device 
knows its location. In the case of a smart speaker, a user 
could specify a location during setup, but a smartwatch is 
rarely stationary. Thus, we also evaluated our model’s ability 
to automatically infer its physical context (e.g., kitchen vs. 
office). Such a capability could enable devices to automati-
cally load per-context classifiers without user intervention. 
For this, we used the predicted sound class itself as a proxy 
for the origin context. For example, if Ubicoustics predicts a 
microwave event, we can infer that the device is in a kitchen. 

To simulate this experimentally, we passed our 30-class 
SFX-All model ten random clips for each context in our test 
data (SFX-Test and In-the-Wild Test). The model classifies 
these clips individually, and the output is used to cast a vote 
for a context. A few classes have special voting logic: if wa-
ter running is detected, votes for both bathroom and kitchen 
are cast, and similarly, knock casts votes for both office and 
entrance. There are also a set of context-free classes (i.e., can 
happen anywhere) that do not cast any votes (dog bark, cat 
meow, vacuum, speech, phone ringing, laugh, cough, door, 
baby cry and hazard alarm). Once all ten sounds have been 
processed, the context with the highest vote count is chosen 
and validated against the ground truth context. We repeated 
this process 1000 times with random contexts and sounds 
within that context. 

Overall, automatic context recognition accuracy is 99.4% 
(SD=1.5%) for the SFX-Test dataset and 92.2% (SD=14.4%) 
for the In-the-Wild dataset. These preliminary results show 
that it may be possible for interactive systems to automati-
cally deduce their context of use by listening for a short 
period after setup. 

Efficacy of Augmentations 
The results reported thus far are based on models tuned on 
SFX-All, which is the superset of all of our data augmenta-
tions. To investigate the effects of each augmentation type, 
we ran the same procedure as our main accuracy studies 
(20% unknown test sounds, checkpointed on self) but with 
different tuning sets: SFX-Orig (i.e., no augmentations), 
SFX-Amp (amplification), SFX-Persist (persistence of 
sound), SFX-Mix (mixing), and SFX-All (all augmentations).  

In this experiment, SFX-Orig serves as a baseline. Combin-
ing results from SFX-Test and In-The-Wild Test, the average 
delta over the baseline for SFX-Amp is +1.6%, SFX-Persist 
is 0.0%, SFX-Mix is +1.8%, and SFX-All is +2.4%. All but 
SFX-Persist are a significant improvement over baseline 
(paired t-tests, p<.01). See Figures 8 and 9 for a breakdown. 

Performance Across Platforms 
If we break out the results by device (In-the-Wild Test plus 
20% unknown test sounds), we can see that the laptop per-
formed the best at 86.1% accuracy, followed by the watch at 
84.1% (Figure 14). It appears that better quality microphones 
and being closer to events helps recognition. The IoT sensor 
performed the worst at 71.3%, likely because it was often the 
farthest sensor from the event source. We also saw a perfor-
mance drop between phone-on-table at 81.5% vs. phone-in-
pocket at 76.1% (which “muffled” the microphone and often 
added fabric chafing background noise).  

Comparison to Prior Results 
There have been a wide variety of metrics used to evaluate 
sound-based recognition systems that make apples-to-apples 
comparisons challenging. Here, we discuss baselines that are 
most relevant to our work. 
SoundNet [4] benchmarks its results on the DCASE chal-
lenge [39], where it achieves 88% on 10 classes. On the ESC-
50 (50 classes) and ESC-10 (10 classes) [29] datasets, 
SoundNet reports an accuracy of 74.2% and 92.2% respec-
tively. For reference, we achieve an accuracy of 82.1% on 30 
classes (all contexts classifier) in our SFX-Test set.  

 
Figure 13. Per-context accuracy (trained on SFX-All, tested on SFX-Test & In-The-Wild Test combined, plus 20% unknown classes.  

 
Figure 12. Confusion matrices for In-the-Wild Test with 20% unknown classes. Class legend found in Figure 7 (∅ is unknown class). 
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Other systems employ metrics that are more relevant to audio 
indexing – given sound or video, a system produces predic-
tion labels as metadata to facilitate search. Hershey et al. [16] 
report a best-case mAP (mean Average Precision) of 0.38 on 
the YouTube-8M dataset and 0.31 on the AudioSet dataset. 
Stated differently, for every sound clip broken into n smaller 
instances, the system makes the correct prediction roughly 
every third instance. While they benchmark their system as 
a retrieval system, we evaluate ours as a recognition system. 

Finally, in the activity recognition domain, BodyScope [42] 
used a wearable necklace to achieve a recognition accuracy 
of 71.5% (tested on in-the-wild data) across four activities 
(eating, drinking, speaking and laughing). Similarly, Sound-
Sense [22] recognizes three classes (speech, music and 
ambient sound) with an accuracy of ~84%. We provide com-
parable accuracies, while offering a much richer set of 
activities without requiring any in situ training. 

LIMITATIONS AND FUTURE WORK 
Our evaluations show promising results that could make 
sound-based activity recognition more practical. That said, 
our work also has limitations, which we now discuss along 
with directions for future work. 

Accuracy 
Our system achieves an average per-context accuracy of 
80.4% (on In-the-Wild Test data, checkpointed on independ-
ent data, with 20% unknown sounds injected), meaning that 
roughly one in five sounds is missed or misclassified. This 
performance is not sufficient to support end-user applica-
tions, though we note it is competitive with human accuracy. 
Better quality microphones and higher sampling rates could 
certainly increase accuracy. Likewise, it is also possible to 
leverage better and deeper model architectures, such as Res-
Nets [44] and those that can model audio temporalities such 
as LSTMs and CRNNs [14].  

Simultaneous Events 
The real world is often noisy, with multiple sounds occurring 
simultaneously. However, our current system and experi-
mentation chiefly focused on isolated sounds. No doubt in 
more chaotic environments, accuracy would suffer. Fortu-
nately, as noted earlier, the additive nature of sound (and 
sound effect data) is perfect for generating compound 
sounds, while retaining the benefits of tight segmentation 
and good labels – an exploration we leave to future work. 

Privacy 
The richness of sound is a double-edged sword. On one hand, 
it enables fine grained activity sensing, while also capturing 
potentially sensitive audio, including spoken content. This is 
an inherent and unavoidable danger of using microphones as 
sensors. However, we note that always-listening devices – 
especially smartphones and smart speakers – are becoming 
more prevalent and accepted in homes and workplaces, and 
so the social stigma of such devices may wane in the coming 
years. In the meantime, to mitigate this technically (socially 
is more challenging), we convert all live audio data into low-
resolution Mel spectrograms (64 bins), discarding phase 
data. With this signal, our model can readily detect speech, 
but the spoken content is challenging to recover. Moreover, 
we envision our model being run locally on devices (as we 
showed possible with our laptop, smartphone, and IoT de-
vice), such that audio data never has to be transmitted.  

Sound Effect Library Licensing 
We were fortunate that our institution had licenses to three 
of the four sound effect libraries we employed (FreeSound is 
freely available online). Such subscriptions and licensing are 
a hindrance to researchers looking to leverage sound effects 
in future work, as well as replicate studies. For this reason, 
we have sought the appropriate permissions to release the 
processed datasets used in this paper (free for education and 
research purposes).  

Bootstrapping Complementary Sensing Systems 
Dimensions beyond audio (e.g., vibrations, motion) are use-
ful for digitizing physical events in environments (see e.g., 
[20]). However, data collection, segmentation and labeling 
are generally laborious. With Ubicoustics, we can facilitate 
and bootstrap this process. For instance, in a wearable appli-
cation, researchers can collect accelerometer data in tandem 
with audio. Ubicoustics can provide predictions for per-
formed events (e.g., typing, chopping, writing), as well as 
offering automatic segmentation of data. We hope to explore 
this multimodal bootstrapping in future work.  

EXAMPLE APPLICATIONS   
We conclude with several example uses that demonstrate the 
potential of our system (Figures 15–20 and Video Figure), 
which span a range of contexts and hardware platforms.  

 
Figure 15. A smart speaker could be configured to pay  

attention to certain events via a drag-and-drop interface.  

 
Figure 14. Per-device accuracies on the In-the-Wild Test. 



Context-Aware Assistants  
Despite smart speakers like Amazon Alexa and Google 
Home being integrated into people’s living spaces (e.g., 
kitchen, living room, bathroom), these systems have no un-
derstanding of events happening around them. With 
Ubicoustics, we can enable new interactive opportunities that 
leverage real-time context-awareness. There are two main 
categories. First are implicit interactions, where systems can 
proactively provide users with assistive information. For ex-
ample, a system could alert users when someone knocks on 
their front door or automatically move to the next step in a 
recipe after detecting, e.g., chopping or a blender running for 
a defined period. Interactions can also be explicit, where us-
ers ask their smart assistants about physical events (Figure 
15), for example, “is my microwave done defrosting?” Noti-
fications about physical events are also possible, such as, 
“send me an alert when my laundry is done.” Additionally, 
knowledge of active tasks can suggest a user’s interruptibil-
ity and better manage interruptions (Figure 16).  

Informatics  
Simply logging the occurrence of events could also be valu-
able. For example, Ubicoustics could track a user’s typing 
over the course of a day, prompting breaks. It could also track 
the ratio between typing and talking, encouraging more face-
to-face interactions. In a classroom setting, a tablet or laptop 
could track the ratio between teacher and student speech 
(Figure 17), suggesting better instructional behaviors [6]. Fi-
nally, IoT sensors in an industrial setting could track 
equipment use, helping to schedule maintenance (Figure 18).  

Mobile and Wearable Sensing 
Smartwatches are unique in that they reside on the body, 
equipping users with a “sensor” that they carry everywhere 
they go. As found in our evaluations, watches are one of the 
stronger performing device categories, given their proximity 
to hand-triggered events. Interactions with objects could be 

logged for quantified self, safety, and assistive applications 
(Figure 19). Being proximate to users is also powerful for 
health sensing. For example, Ubicoustics can detect when a 
user coughs or sneezes more frequently. This could enable 
smartwatches to track the onset of symptoms and potentially 
nudge users towards healthy behaviors, such as washing 
hands or scheduling a doctor’s appointment (Figure 20).  

CONCLUSION    
We have shown that Ubicoustics can unlock real-time activ-
ity recognition by leveraging one of the most common 
sensors found in consumer electronics today – microphones 
– bringing the promise of smart devices and environments 
closer to reality. By leveraging existing state-of-the-art 
sound classification models and tuning them with sound ef-
fects, we enabled a general-purpose and flexible sound 
recognition pipeline that requires no in situ data collection, 
yielding a “plug and play” end user experience. We evalu-
ated the robustness of our approach across different physical 
contexts and hardware platforms, and show that our system 
can achieve superior accuracies over prior work, both in 
terms of recognition accuracy and false positive rejection.  
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Figure 16. Devices could be made aware of user interrupti-

bility, enabling more nuanced notification behaviors. When 
working alone, interruption cost might be low (left), whereas 

in a phone call it might be high (right). 

 
Figure 17. In a classroom setting (A), tablets could track and  

visualize instructional informatics, such as speaking ratio (B). 

 
Figure18. Sound-driven IoT sensors could track  

equipment use (A) for safety and maintenance (B). 

 
Figure 19. Phones could be used to detect appliance use, 

which can proactively provide information (Left: “don’t for-
get to wear safety googles!”) or launch complementary 

applications (Right: “3100 RPM for softwood”). 

 
Figure 20. Smartwatches could track additional health infor-
mation, such as coughing (A), and recommend actions (B). 
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