Synthetic Sensors

Towards General-Purpose Sensing

Abstract

We explore the notion of general-purpose sensing, wherein a single, highly capable sensor can indirectly monitor a large context, without direct instrumentation of objects. Further, through what we call Synthetic Sensors, we can virtualize raw sensor data into actionable feeds, whilst simultaneously mitigating immediate privacy issues. We use a series of structured, formative studies to inform the development of new sensor hardware and accompanying information architecture. We deployed our system across many months and environments, the results of which show the versatility, accuracy and potential of this approach.

FULL CITATION

Gierad Laput, Yang Zhang, and Chris Harrison. 2017. Synthetic Sensors: Towards General-Purpose Sensing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 3986-3999. DOI: https://doi.org/10.1145/3025453.3025773

COMMERCIALIZATION

Synthetic Sensors is in the process of being commercialized! We have grown beyond the original Synthetic Sensors Project, and we are grateful for our collaborators that have helped push the project to the next frontier. For questions about commercialization, please contact: support@mites.io

Commercialization Team:

Abhijit Hota
(Student Rockstar)

Chen Chen
(Student Rockstar)

Sudershan Boovaraghavan
(Student Rockstar)

Prof. Yuvraj Agarwal
(Faculty Lead)

MEDIA and IMAGES